悬挂键对石墨烯纳米带电子结构的影响
The Effect of Dangling Bonds on Electronic Structure for Graphene Nanoribbons

作者: 朱萧宵 , 朱瑞涛 , 史友进 , 徐 宁 :盐城工学院物理系,江苏 盐城;

关键词: 紧束缚理论石墨烯电子结构Tight Binding Theory Graphene Electronic Structure

摘要:
通过原子轨道线性组合方法研究悬挂键对石墨烯纳米带的电子结构的影响规律。当悬挂键能量超过7 eV时,边缘态被有效地消除,与第一性原理方法所得结果一致。对于完美的半导体石墨烯纳米带,由于未配对电子的存在,费米能附近出现悬挂键态和相应的电导峰。计算结果对石墨烯纳米带电子器件的设计和性能改善有指导意义。

Abstract: The effect of dangling bonds on electronic structure and thermoelectric properties for graphene nanoribbons (GNRs) have been studied by using the empirical linear combination of atomic orbitals (LCAO) scheme. When the dangling bond energy is larger than 7 eV, the edge states are efficiently eliminated, which is consistent well with the results obtained from ab initio calculation. For pristine semiconductor GNRs, the states of dangling bonds and the corresponding conductance peaks are observed around the Fermi energy owing to unpaired electrons. These results play an important role in designing the electronic device.

文章引用: 朱萧宵 , 朱瑞涛 , 史友进 , 徐 宁 (2015) 悬挂键对石墨烯纳米带电子结构的影响。 应用物理, 5, 53-60. doi: 10.12677/APP.2015.56008

参考文献

[1] Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V. and Firsov, A.A. (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197-200.

[2] Zhang, Y., Tan, Y.-W., Stormer, H.L. and Kim, P. (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature, 438, 201-204.

[3] Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K. and Tour, J.M. (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 458, 872-876.

[4] Jiao, L.Y., Zhang, L., Wang, X.R., Diankov, G. and Dai, H.J. (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature, 458, 877-880.

[5] Berger, C., Song, Z., Li, X.B., Wu, X.S., Brown, N., Naud, C., Mayou, D., Li, T.B., Hass, J., Marchenkov, A.N., Conrad, E.H., First, P.N. and De Heer, W.A. (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science, 312, 1191-1196.

[6] Berger, C., Song, Z.M., Li, T.M., Li, X.B., Ogbazghi, A.Y., Feng, R., Dai, Z.T., Marchenkov, A.N., Conrad, E.H., First, P.N. and De Heer, W.A. (2004) Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. The Journal of Physical Chemistry B, 108, 19912-19916.

[7] Fujita, M., Wakabayashi, K., Nakada, K. and Kusakabe, K. (1996) Peculiar localized state at zigzag graphite edge. Journal of the Physical Society of Japan, 65, 1920-1923.

[8] Nakada, K., Fujita, M., Dresselhaus, G. and Dresselhaus, M.S. (1996) Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Physical Review B, 54, Article ID: 17954.

[9] Wakabayashi, K., Fujita, M., Ajiki, H. and Sigrist, M. (1999) Electronic and magnetic properties of nanographite ribbons. Physical Review B, 59, 8271-8282.

[10] Ezawa, M. (2006) Peculiar width dependence of the electronic properties of carbon nanoribbons. Physical Review B, 73, Article ID: 045432.

[11] Son, Y.W., Cohen, M.L. and Louie, S.G. (2006) Energy gaps in graphene nanoribbons. Physical Review Letters, 97, Article ID: 216803.

[12] Brey, L. and Fertig, H.A. (2006) Electronic states of graphene nanoribbons studied with the Dirac equation. Physical Review B, 73, Article ID: 235411.

[13] Sasaki, K.-I., Murakami, S. and Saito, R. (2006) Gauge field for edge state in graphene. Journal of the Physical Society of Japan, 75, Article ID: 074713.

[14] Abanin, D.A., Lee, P.A. and Levitov, L.S. (2006) Spin-filtered edge states and quantum Hall effect in graphene. Physical Review Letters, 96, Article ID: 176803.

[15] Lee, S., Oyafuso, F., Allmen, P. and Klimeck, G. (2004) Boundary conditions for the electronic structure of finite- extent embedded semiconductor nanostructures. Physical Review B, 69, Article ID: 045316.

[16] Zhang, X.W. and Yang, G.W. (2009) Novel band structures and transport properties from graphene nanoribbons with armchair edges. The Journal of Physical Chemistry C, 113, 4662-4668.

[17] Mintmire, J.W. and White, C.T. (1995) Electronic and structural properties of carbon nanotubes. Carbon, 33, 893-902.

[18] Blasé, X., Benedict, L.X., Shirley, E.L. and Louie, S.G. (1994) Hybridization effects and metallicity in small radius carbon nanotubes. Physical Review Letters, 72, 1878-1881.

[19] Ding, J.W., Yan, X.H., Cao, J.X., Tang, Y. and Yang, Q.B. (2003) Curvature and strain effects on electronic properties of single-wall carbon nanotubes. Journal of Physics: Condensed Matter, 15, L439-L445.

[20] Xu, N., Ding, J.W. and Xing, D.Y. (2008) Electronic transport in outer-wall disordered carbon nanotube molecular devices. Journal of Applied Physics, 103, Article ID: 083710.

[21] Xu, N. and Ding, J.W. (2008) Conductance growth in metallic bilayer graphene nanoribbons with disorder and contact scattering. Journal of Physics: Condensed Matter, 20, Article ID: 485213.

分享
Top