基于兴趣导航的农业科技信息协同过滤推荐方法
A Collaborative Filtering Recommendation Algorithm Basing on Preference Navigation for Agricultural Science and Technology Information

作者: 王文超 , 宋金玲 :河北科技师范学院数信学院,河北 秦皇岛; 黄立明 :河北科技师范学院工商管理学院,河北 秦皇岛; 刘爱勇 :河北科技师范学院数信学院,河北 秦皇岛 ;

关键词: 用户兴趣协同过滤单用户类型多用户类型相似度User Preference Collaborative Filtering Single User Type Multiple User Type Similarity

摘要: 由于推荐技术在农业科技信息服务领域的应用处于起步阶段,而传统推荐技术的针对性又存在不足,针对这些问题,提出了基于兴趣导航的协同过滤农业科技信息推荐技术。对于用户类型比较单一的网站,首先根据信息的浏览量选择目标用户的候选兴趣信息,然后根据其他用户对候选信息的评分确定最终的推荐信息。对于用户类型多样化的网站,首先根据目标用户的历史浏览信息及评分确定用户兴趣导航信息,然后根据导航信息确定导航用户集,再通过导航用户集的项目评分确定相似用户集,最后根据相似用户对其他信息进行评分估计并进行推荐。

Abstract: Although the recommendation technology has been used in agricultural science and technology information service website, it is still obvious that the recommendation result lacks of persona-lization. In order to solve this problem, a collaborative filtering recommendation method basing on preference navigation for agricultural science and technology information is proposed. For the website with single user type, the candidate preference information are selected for the target user firstly according to the browsing quantity, then the recommendation information is determined according to the ratings of the other users. For the website with various types of users, user preference navigation information is chosen according to the browsing history and rating of the target user firstly, the navigation users are determined basing on user preference navigation information secondly, then similar users are determined through the ratings of navigation users, finally predict ratings of other items and recommend according to the similar users.

文章引用: 王文超 , 宋金玲 , 黄立明 , 刘爱勇 (2015) 基于兴趣导航的农业科技信息协同过滤推荐方法。 计算机科学与应用, 5, 231-238. doi: 10.12677/CSA.2015.56030

参考文献

[1] 中国农业网 (2014) 2014年中国农业互联网行业分析报告. http://www.zgny.com.cn/ifm/consultation/2014-10-10/271777.shtml

[2] 杨博, 赵鹏飞 (2011) 推荐技术综述. 山西大学学报(自然科学版), 34, 337-350.

[3] Wang, J., De Vries, A.P. and Reinders, M.J.T. (2006) Unifying user-based and item-based collaborative filtering approaches by similariity fusion. Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, 9 August 2006, 501-508.

[4] Sarwar, B., Karypis, G., Konstan, J., et al. (2001) Item-based collaborative filtering recommendation algorithms. Proceedings of the 10th International Conference on World Wide Web, New York, 1-5 May 2001, 285-295.

[5] 孙光福, 吴乐, 刘淇, 朱琛, 陈恩红 (2013) 基于时序行为的协同过滤推荐算法. 软件学报, 24, 2721-2732.

[6] 贾冬艳, 张付志 (2013) 基于双重邻居选取策略的协同过滤推荐算法. 计算机研究与发展, 50, 1076-1084.

[7] 顾梁, 杨鹏, 罗军舟 (2015) 一种播存网络环境下的UCL协同过滤推荐方法. 计算机研究与发展, 52, 474-486.

[8] 陈诚, 廖桂平, 史晓慧, 等 (2011) 农业农村信息服务个性化推送技术. 中国农学通报, 27, 151-156.

分享
Top