电磁脉冲在坑道中传播分析方法
The Method for Analyses of Electromagnetic Pulse Propagation in Tunnels

作者: 熊 润 :中国人民解放军工程兵学院,江苏 徐州 ;

关键词: 坑道电磁脉冲时域有限差分Tunnel Electromagnetic Pulse Finite Difference Time Domain

摘要:
本文针对电磁脉冲在坑道中传播的问题,提出了一种基于FDTD方法的解决模型。仿真中采用卷积完全匹配层截断计算区域;对坑道的拱顶,采用共形的方案进行模拟;激励源采用超宽带脉冲;为克服仿真资源的占用对计算机硬件的要求,采用了并行的方案。最后我们建立的模型仿真了电磁脉冲在坑道中的传播,得到了一些规律,验证了本模型的有效性。

Abstract: In this paper, we propose a solution model based on Finite Difference Time Domain (FDTD) method to analyze the electromagnetic pulse propagation in tunnels. In this method, Conventional Perfectly Matched Layers (CPML) is occupied to truncate the computational domain, and conformal grids are used to model camber top of the tunnel. Ultra-wideband pulse is used as the source used to and parallel implementation is occupied to overcome the computer memory limit. The electromagnetic pulse propagation in tunnels is simulated and some propagation laws are found which demonstrate the efficiency of the proposed method.

文章引用: 熊 润 (2015) 电磁脉冲在坑道中传播分析方法。 电磁分析与应用, 4, 18-25. doi: 10.12677/EAA.2015.42003

参考文献

[1] Paul, D. (1982) Leaky feeders and subsurface radio communications. Peter Peregrinus Ltd., Belgium.

[2] 周璧华, 陈彬, 高成 (2002) 现代战争面临的高功率电磁环境分析. 微波学报, 1, 88-92.

[3] Taflave, A. and Hagness, S.C. (2000) Computational electrodynamics: The finite-difference time-domain method. Artech House, Boston.

[4] Roden, J.A. and Gedney, S.D. (2000) Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for ar-bitrary media. Microwave and Optical Technology Letters, 27, 334-339.

[5] 赖祖武 (1995) 高功率微波及核电磁脉冲的防护问题. 微波学报, 1, 1-8.

[6] 李瑞彬, 张明友 (1995) 多功能微波武器概念研究. 电子对抗, 2, 16-22.

[7] 方进勇, 刘国治, 李平, 王宏军 (1999) 高功率微波脉冲宽度效应实验研究. 强激光与粒子束, 5, 639-642.

[8] 余文华, 苏涛, Mittra, R., 等 (2005) 并行时域有限差分. 中国传媒大学出版社, 北京.

分享
Top