Cu的添加对Fe-B-C-Cu系纳米晶合金软磁性能的影响
Cu Addition Effect on Soft Magnetic Properties in Fe-B-C-Cu Alloy System

作者: 范星都 , 门贺 , 江静华 , 马爱斌 , 沈宝龙 :;

关键词: 软磁合金铁基纳米晶合金软磁性能低铁损Soft Magnetic Alloy Fe-Based Nanocrystalline Alloy Soft Magnetic Property Low Core Loss

摘要: 通过单辊快淬法制备了Fe-B-C-Cu非晶态合金,并利用等温退火法对其进行晶化热处理制得纳米晶。用DSC、XRD、TEM、VSM、交直流B-H仪等对其微观结构及软磁性能进行了研究。结果表明:Cu的添加作为α-Fe形核点的作用明显,有效地促进了具有纳米级尺寸的单相α-Fe的析出,Fe84-xB10C6Cux系纳米晶合金的矫顽力随Cu含量的增加而先降低后增加,饱和磁感应强度则由于α-Fe的析出而呈增大的趋势。当Cu原子百分含量为1时,该系合金具有最佳的软磁性能,如高饱和磁感应强度Bs= 1.78 T,低矫顽力Hc= 5.1 A/m,低铁损P10/50= 0.34 W/kg。

Abstract: In this study, the microstructures and soft magnetic properties of Fe-B-C-Cu alloys prepared by annealing the melt-spun ribbons have been investigated by DSC, XRD, TEM, VSM, AC and DC B-H tracer measurement. The results show that inFe84-xB10C6Cuxalloy system, the addition of Cu element takes great effect on the precipitation of α-Fe, coercivity (Hc) decreases with increasing x and exhibits a minimum at x=1.0, then Hc increases. And magnetic flux density (Bs) shows an increasing tendency due to the precipitation of α-Fe. When x=1.0, the alloy exhibits excellent magnetic properties with a high Bs of 1.78 T, low Hc of 5.1 A/m and low core loss of 0.34 W/kg at 1.0 T and 50 Hz.

文章引用: 范星都 , 门贺 , 江静华 , 马爱斌 , 沈宝龙 (2011) Cu的添加对Fe-B-C-Cu系纳米晶合金软磁性能的影响。 材料科学, 1, 37-41. doi: 10.12677/ms.2011.12007

参考文献

[1] Y. Yoshizawa, S. Oguma, and K. Yamauchi. New Fe-based soft magnetic alloys compose of ultrafine grain structure. Journal of Applied Physics, 1988, 64(10): 6044-6046.

[2] K. Suzuki, A. Makino, A. Inoue, et al. Soft magnetic properties of nanocrystalline bcc Fe-Zr-B and Fe-M-B-Cu (M = transition metal) alloys with high saturation magnetization. Journal of Applied Physics, 1991, 70(15): 6232-6235.

[3] M. A. Willard, D. E. Laughlin, M. E. Mchenry, et al. Structure and magnetic properties of (Fe0.5Co0.5)88Zr7B4Cu1 nanocrystalline alloys. Journal of Applied Physics, 1998, 84(12): 6773-6777.

[4] A. Makino, H. Men, T. Kubota, et al. FeSiBPCu nanocrystalline soft magnetic alloys with high Bs of 1.9 tesla produced by crystallizing hetero-amorphous phase. Materials Transactions, 2009, 50(1): 204-209.

[5] A. Makino, H. Men, K. Yubuta, et al. Soft magnetic FeSiBPCu heteroamorphous alloys with high Fe content. Journal Applied Physics, 2009, 105(1): Article ID 013922.

[6] S. Hatta, T. Egami, and C. D. Graham. Fe-B-C amorphous alloys with room-temperature saturation induction over 17.5 kG. Applied Physics Letters, 1979, 34(1): 113-114.

[7] Y. Z. Jia, S. Y. Zeng, S. F. Shan, et al. Effect of copper addition on the glass forming ability of a Fe-Co based alloy. Journal of Alloys Compounds, 2007, 440(1-2): 113-116.

[8] K. Hono, K. Hiraga, and Q. Wang. The microstructure evolution of a Fe73.5Si13.5B9Nb3Cu1 nanocrystalline soft magnetic material. Acta Metallurgica et Materialia, 1992, 40(9): 2137-2147.

[9] M. Ohnuma, K. Hono, and H. Onodera. Cu cluster stage before the crystallization in Fe-Si-B-Nb-Cu amorphous alloys. Nanostructured Materials, 1999, 12(5-8): 693-696.

[10] M. Ohta, Y. Yoshizawa. Effect of heating rate on soft magnetic properties in nanocrystalline Fe80.5Cu1.5Si4B14 and Fe82Cu1Nb1Si4 B12 alloys. Applied Physics Express, 2009, 2(2): Article ID 023005.

[11] G. Herzer. Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Transactions on Magnetics, 1990, 26(5):1397-1402.

[12] G. Herzer. Nanocrystalline soft magnetic materials. Journal of Magnetism and Magnetic Materials, 1992, 112(1-3): 258-262.

分享
Top