中部任意位置定向支承加固的压杆稳定性计算
Stability Calculation of Long Column under Directional Support in Any Position of Central
作者: 黄开志 , 陈小亮 , 田祖安 , 丁剑平 :重庆科技学院数理学院,重庆;
关键词: 材料力学; 压杆; 稳定性; 临界压力; 特征方程; 长度因数; Mechanics of Materials; Long Column; Stability; Critical Force; Characteristic Equation; Factor of Length
摘要:Abstract: For enriching the research content about the stability of a long column and making it convenient in the engineering application, by using the initial parameters method, seven kinds of long column are strengthened by directional support in any position of central, and the unified deformation equa-tions and static force equilibrium equations are established. By the respective constraint conditions of deformation and static force, the characteristic equations of critical force are solved. By software, the approximate or accurate relationship between the factor of length of long column and the posi-tion of the central directional support are determined; at the same time, the best position of the central directional support and the minimum factor of length, and the worst position and the maximum factor of length are all determined. The result is verified according with theoretical expectation.
文章引用: 黄开志 , 陈小亮 , 田祖安 , 丁剑平 (2015) 中部任意位置定向支承加固的压杆稳定性计算。 力学研究, 4, 15-23. doi: 10.12677/IJM.2015.42003
参考文献
[1] 李有兴, 肖芳淳 (1995) 用弯剪矩阵法确定压杆临界力的教学研究. 力学与实践, 1, 69-71.
[2] 张春晓 (1997) 关于弯剪矩阵的思考. 力学与实践, 2, 68-69.
[3] 冯贤贵 (2003) 细长压杆临界压力的统一推导. 力学与实践, 4, 65-67.
[4] 曾生桥 (2007) 细长压杆临界压力欧拉公式的另一种统一推导. 常州工学院学报, 2, 48-50.
[5] 董冠文, 等 (2012) 压杆稳定临界力欧拉公式统一推导. 武汉工程大学学报, 12, 71-74.
[6] 黄开志, 陈小亮 (2014) 两端任意线弹性支承的压杆稳定性研究. 四川理工学院学报(自然科学版), 5, 22-24.
[7] 刘鸿文 (2011) 材料力学(第5版). 高等教育出版社, 北京, 177.
[8] 蒋学东, 李小平 (2003) 连续压杆稳定性初参数法的研究. 江苏工业学院学报, 2, 43-45.
[9] 倪晓博, 许笛 (2010) 连续梁式压杆固有频率与稳定性分析. 科技创新导报, 5, 112.
[10] 李德威 (1994) 多跨连续压杆的稳定分析. 华南理工大学学报(自然科学版), 22, 28-32.
[11] 张晓霞, 等 (2011) 初始挠度及中间弹性支撑对压杆稳定性的影响分析. 机械设计与研究, 6, 1-4.
[12] 黄开志, 陈小亮 (2014) 任意线弹性支承的双跨压杆稳定性计算. 武汉工程大学学报, 9, 7-11.
[13] 黄开志, 陈小亮, 郑安节 (2014) 中部铰支加固的细长压杆稳定性研究.重庆科技学院学报(自然科学版), 5, 122-126.