即时检测试纸内渗流理论及流动控制研究进展
State-of-Art Advances in Liquid Penetration Theory and Flow Control in Paper for Paper-Based Diagnosis

作者: 冯上升 , 陈玧如 , 卢天健 , 徐 峰 :西安交通大学仿生工程与生物力学中心,陕西 西安;

关键词: 纸基微流控芯片检测试纸渗流流动控制Paper-Based Microfluidic Chip Diagnosis Porous Flow Flow Control

摘要:
纸是由纤维素层状无序排布构成的多孔介质。近年来,检测试纸和纸基微流控芯片在疾病诊断、水污染和食品安全的快速检测中的应用受到人们广泛关注。纸内的渗流规律对于解释检测结果和提高检测的准确度和灵敏度都具有重要意义。本文概述了纸内渗流理论的研究进展,包括宏观毛细渗流及孔隙结构内微观渗流,并介绍了纸内流动的控制方法及其对检测试纸和纸基微流控芯片检测效果的影响。

Abstract: Paper is composed of cellulosic fibers forming the planar net work structure where the positions, orientations of the fibers are random. Recently, paper based detection platforms (e.g., microfluidics, lateral flow assays) have found widespread applications in diagnosis and monitoring of diseases, environment pollution, food safety, etc. How to explain the detecting results in paper-based diagnose and how to improve the sensitivity of the detecting are all related to an insight into the liquid penetration in the paper. This paper presents the state-of-art advances in the theory for both macroscopical and pore-scale liquid penetration in paper. The flow control methods of liquid flow in paper integrated into LFAs and microfluidic chips are also introduced, along with their effects on the efficiency of paper-based diagnosis.

文章引用: 冯上升 , 陈玧如 , 卢天健 , 徐 峰 (2015) 即时检测试纸内渗流理论及流动控制研究进展。 渗流力学进展, 5, 16-29. doi: 10.12677/APF.2015.52003

参考文献

[1] Alava, M. and Niskanen, K. (2006) The physics of paper. Reports on Progress in Physics, 69, 669-723.

[2] Aronsson, M. (2002) On 3D fibre measurements of digitized paper. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala.

[3] Reed, C.M. and Wilson, N. (1993) The fundamentals of absorbency of fibres, textile structures and po-lymers. I. The rate of rise of a liquid in glass capillaries. Journal of Physics D: Applied Physics, 26, 1378-1381.

[4] Washburn, E.W. (1921) The dynamics of capillary flow. Physical Review, 17, 273-283.

[5] Fries, N., Odic, K, Conrath, M. and Dreyer, M. (2008) The effect of evaporation on the wicking of liquids into a metallic weave. Journal of Colloid and Interface Science, 321, 118-129.

[6] Liu, Z., Hu, J., Zhao, Y., et al. (2014) Experimental and numerical studies on liquid wicking into filter papers for paper-based diagnostics. Applied Thermal Engineering, in press.

[7] Lockington, D.A. and Parlange, J.-Y. (2004) A new equation for macroscopic description of capillary rise in porous media. Journal of Colloid and Interface Science, 278, 404-409.

[8] Marmur, A. (1988) The radial capillary. Journal of Colloid and Interface Science, 124, 301-308.

[9] Hyväluoma, J., Raiskinmäki, P., Jäsberg, A., et al. (2006) Simulation of liquid penetration in paper. Physical Review E, 73, 036705.

[10] Kissa, E. (1981) Capillary sorption in fibrous assemblies. Journal of Colloid and Interface Science, 83, 265-272.

[11] Danino, D. and Marmur, A. (1994) Radial capillary penetration into paper: Limited and unlimited liquid reservoirs. Journal of Colloid and Interface Science, 166, 245-250.

[12] Alava, M., Dubé, M. and Rost, M. (2004) Imbibition in disordered media. Advances in Physics, 53, 83-175.

[13] Horváth, V.K. and Stanley, H.E. (1995) Temporal scaling of interfaces propagating in porous media. Physical Review E, 52, 5166-5169.

[14] Koponen, A., Kandhai, D., Hellen, E., Alava, M., Hoekstra, A., Kataja, M., et al. (1998) Permeability of three-dimensional random fiber webs. Physical Review Letters, 80, 716-719.

[15] Schulz, V.P., Becker, J., Wiegmann, A., Mukherjee, P. and Wang, C.-Y. (2007) Modeling of two-phase behavior in the gas diffusion medium of PEFCs via full morphology approach. Journal of the Electrochemical Society, 154, B419- B426.

[16] Becker, J., Schulz, V. and Wiegmann, A. (2008) Numerical determination of two-phase material parameters of a gas diffusion layer using tomography images. Journal of Fuel Cell Science and Technology, 5, Article ID: 021006.

[17] Mark, A., Sandboge, R., Berce, A., Edelvik, F., Glatt, E., Rief, S., et al. (2012) Multi-scale simulation of paperboard edge wicking using a fiber-resolving virtual paper model. TAPPI Journal, 11, 9-16.

[18] Wiklund, H.S. and Uesaka, T. (2013) Microfluidics of imbibition in random porous media. Physical Review E, 87, Article ID: 023006.

[19] Hyväluoma, J., Turpeinen, T., Raiskinmäki, P., Jäsberg, A., Koponen, A., Kataja, M., et al. (2007) Intrusion of nonwetting liquid in paper. Physical Review E, 75, Article ID: 036301.

[20] 李清宇, 王乾, 徐献芝 (2014) 细观渗流的研究与进展. 渗流力学进展, 2, 29-41.

[21] Bijeljic, B., Markicevic, B. and Navaz, H.K. (2011) Capillary climb dynamics in the limits of prevailing capillary and gravity force. Physical Review E, 83, Article ID: 056310.

[22] Pan, S.X., Davis, H.T. and Scriven, L.E. (1995) Modeling moisture distribution and binder migration in drying paper coatings. TAPPI Journal, 78, 127-143.

[23] Ghassemzadeh, J. and Sahimi, M. (2004) Pore network simulation of fluid imbibition into paper during coating: II. Characterization of paper’s morphology and computation of its effective permeability tensor. Chemical Engineering Science, 59, 2265-2280.

[24] Ghassemzadeh, J. and Sahimi, M. (2004) Pore network simulation of fluid imbibition into paper during coating—III: Modelling of the two-phase flow. Chemical Engineering Science, 59, 2281-2296.

[25] USAIDS (2015) Report on the global AIDS epidemic. http://data.unaids.org/pub/GlobalReport/2008/JC1510_2008GlobalReport_en.zip

[26] Centers for Disease Control and Prevention (CDC) (2011) Vital signs: Incidence and trends of infection with pathogens transmitted commonly through food—Foodborne diseases active surveillance network, 10 US sites, 1996-2010. MMWR, Morbidity and Mortality Week-ly Report, 60, 749-755.

[27] Abrams, J.Y., Copeland, J.R., Tauxe, R.V., Date, K.A., Belay, E.D., Mody, R.K. and Mintz, E.D. (2013) Real-time modelling used for outbreak management during a cholera epidemic, Haiti, 2010-2011. Epidemiology and Infection, 141, 1276-1285.

[28] Martinez, A.W, Phillips, S.T., Whitesides, G.M. and Carrilho, E. (2009) Diagnostics for the developing world: Microfluidic paper-based analytical devices. Analytical Chemistry, 82, 3-10.

[29] Nilghaz, A., Wicaksono, D.H.B., Gustiono, D., Abdul Majid, F.A., Supriyanto, E. and Abdul Kadir, M.R. (2012) Flexible microfluidic cloth-based analytical devices using a low-cost wax patterning technique. Lab on a Chip, 12, 209-218.

[30] Hu, J., Wang, S.Q., Wang, L., Li, F., Pingguan-Murphy, B., Lu, T.J., and Xu, F. (2014) Advances in paper-based point-of-care diagnostics. Biosensors and Bioelectronics, 54, 585-597.

[31] Apilux, A., Ukita, Y., Chikae, M., Chailapakul, O. and Takamura, Y. (2013) Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing. Lab on a Chip, 13, 126-135.

[32] Rivas, L., Medina-Sánchez, M., de la Escosura-Muñiz, A. and Merkoçi, A. (2014) Improving sensitivity of gold nanoparticle-based lateral flow assays by using wax-printed pillars as delay barriers of microfluidics. Lab on a Chip, 14, 4406-4414.

[33] Martinez, A.W., Phillips, S.T., Nie, Z., Cheng, C.-M., Carrilho, E., Wiley, B.J. and Whitesides, G.M. (2010) Programmable diagnostic devices made from paper and tape. Lab on a Chip, 10, 2499-2504.

[34] Giokas, D.L., Tsogas, G.Z. and Vlessidis, A.G. (2014) Programming fluid transport in paper-based microfluidic devices using ra-zor-crafted open channels. Analytical Chemistry, 86, 6202-6207.

[35] Jahanshahi-Anbuhi, S., Chavan, P., Sicard, C., Leung, V., Hossain, S.M., Pelton, R., et al. (2012) Creating fast flow channels in paper fluidic devices to control timing of sequential reactions. Lab on a Chip, 12, 5079-5085.

[36] Posthuma-Trumpie, G.A., Korf, J. and van Amerongen, A. (2009) Lateral flow (Immuno) assay: Its strengths, weaknesses, opportunities and threats. A literature survey. Analytical and Bioanalytical Chemistry, 393, 569-582.

[37] Cuzzubbo, A.J., Endy, T.P., Nisalak, A., Kalayanarooj, S., Vaughn, D.W., Ogata, S.A., et al. (2001) Use of recombinant envelope proteins for serological diagnosis of dengue virus infection in an immunochromatographic assay. Clinical and Diagnostic Laboratory Immunology, 8, 1150-1155.

[38] Mark, D., Haeberle, S., Roth, G., von Stetten, F. and Zengerle, R. (2010) Microfluidic lab-on-a-chip platforms: Requirements, characteristics and applications. Chemical Society Reviews, 39, 1153-1182.

[39] Mao, X., Ma, Y.Q., Zhang, A.G., Zhang, L.R., Zeng, L.W. and Liu, G.D. (2009) Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip. Analytical Chemistry, 81, 1660-1668.

[40] Hu, J., Wang, L., Li, F., Han, Y.L., Lin, M., Lu, T.J. and Xu, F. (2013) Oligonucleotide-linked gold nanoparticle aggregates for enhanced sensitivity in lateral flow assays. Lab on a Chip, 13, 4352-4357.

[41] Chen, Y.H., Kuo, Z.K. and Cheng, C.M. (2015) Paper—A potential platform in pharmaceutical development. Trends in Biotechnology, 33, 4-9.

[42] Fu, E., Liang, T., Spicar-Mihalic, P., Houghtaling, J., Ramachandran, S. and Yager, P. (2012) Two-dimensional paper network format that enables simple multistep assays for use in low-resource settings in the context of malaria antigen detection. Analytical Chemistry, 84, 4574-4579.

[43] Renault, C., Li, X., Fosdick, S.E. and Crooks, R.M. (2013) Hollow-channel paper analytical devices. Analytical Chemistry, 85, 7976-7979.

[44] Lutz, B., Liang, T., Fu, E., Ramachandran, S., Kauffman, P. and Yager, P. (2013) Dissolvable fluidic time delays for programming multi-step assays in instrument-free paper diagnostics. Lab on a Chip, 13, 2840-2847.

[45] Jahanshahi-Anbuhi, S., Henry, A., Leung, V., Sicard, C., Pennings, K., Pelton, R., et al. (2014) Paper-based microfluidics with an erodible polymeric bridge giving controlled release and timed flow shutoff. Lab on a Chip, 14, 229-236.

[46] Li, X., Zwanenburg, P. and Liu, X. (2013) Magnetic timing valves for fluid control in paper-based microfluidics. Lab on a Chip, 13, 2609-2614.

分享
Top