The Researches of the Continuous Axiom of Erceg’s Pseudo-Metric and the Relationships between Its Basic Spheres

作者: 陈 鹏 , 胡志娟 , 杨 晓 , 金梦洁 , 刘磊磊 , 田志钢 :河南科技大学数学与统计学院,河南 洛阳;

关键词: 诱导拓扑Erceg-Peng公理Ur开映射Br闭映射Induced Topology Erceg-Peng’s Axiom Ur Open Mapping Br Closed Mapping


Abstract: In this paper, by comparing the axioms of Erceg-Peng metric and classical metric, we have proved that there is no intrinsic relationship between the topology induced by Erceg metric and the con-tinuous condition in its axioms, and further given some relationships of several types of basic spheres in Erceg-Peng’s pseudo-metric.

文章引用: 陈 鹏 , 胡志娟 , 杨 晓 , 金梦洁 , 刘磊磊 , 田志钢 (2015) Erceg伪度量连续性公理及其基本球的关系的研究。 应用数学进展, 4, 209-216. doi: 10.12677/AAM.2015.42026


[1] Erceg, M.A. (1979) Metric spaces in fuzzy set theory. Journal of Mathematical Analysis and Applications, 69, 205- 230.

[2] 陈鹏, 史福贵 (2007) Erceg-度量的进一步简化及其性质. 数学进展, 5, 579-586.

[3] Chen, P. (2011) The relation between two kinds of metrics on lattices. Annals of Fuzzy Sets, Fuzzy Logic and Fuzzy Systems, 1, 175-181.

[4] 梁基华 (1984) 关于不分明度量空间的几个问题. 数学年刊, 1, 59-67.

[5] Peng, Y.W. (1993) Simplification of Erceg’s fuzzy metric function and its application. Fuzzy Sets and Systems, 54, 181-189.

[6] 彭育威 (1996) 对格上Erceg式p.q.(p.)度量的注记. 数学研究与评论, 1, 135-138.

[7] Shi, F.G. (2001) Pointwise pseu-do-metrics in L-fuzzy set theory. Fuzzy Sets and Systems, 121, 200-216.

[8] Hausdorff, F. (1957) Set Theory. 2nd Edition, Chelsea, New York.

[9] Kelley, J.L. (1955) General topology. Stone, M.A., Nirenberg, L. and Chern, S.S., Eds., Van Nostrand, New York.

[10] 王国俊 (1982) 邻域方法在Fuzzy拓扑学中的困难. 模糊数学, 1, 113-116.