5083-H321铝合金板材生产工艺研究
Technical Study on 5083-H321 Aluminum Alloy Sheet

作者: 李严法 , 李江宇 :广西柳州银海铝业股份有限公司,广西 柳州; 戴青松 , 邓运来 :中南大学材料科学与工程学院,湖南 长沙;

关键词: 5083-H321铝合金生产工艺正交试验综合性能5083-H321 Aluminum Alloy Production Technical Orthogonal Experiment Combination Property

摘要:
通过正交试验法与极差分析法研究了冷变形量、稳定化退火温度、稳定化退火时间对5083铝合金板材力学性能的影响,试验结果表明:在冷变形量为10%~25%、退火温度140℃~200℃、保温时间0.5~3 h范围内,三因素对力学性能的影响主次顺序为:冷变形量 > 稳定化退火时间 > 稳定化退火温度。3 mm厚5083-H321铝合金优选工艺范围为:变形量20%~25%、退火制度160℃~180℃/2h。进一步研究表明,当冷变形量为20%、退火制度为180℃/2h时,试样可获得最佳的综合性能:抗拉强度为328 MPa、屈服强度为256 MPa、延伸率为16.4%,晶间腐蚀质量损失量为18.7 mg/cm2,腐蚀深度为48 um。

Abstract: The effects of cold deformation, stabilizing annealing temperature and stabilizing annealing time on the mechanical properties of 5083 aluminum alloy sheet were studied by means of orthogonal experiment and range analysis in this paper. The results indicated that the significance of three factors in affecting the mechanical properties of 5083 aluminum alloy sheets was in a descending order as: cold deformation, stabilizing annealing time, stabilizing annealing temperature, when cold deformed 20% - 25%, then under annealing processing, 140˚C - 200˚C/0.5 h - 3 h, treated. The optimum range of 5083-H321 aluminum alloy sheets was 20% - 25% cold deformation and 160˚C - 180˚C/2h annealing treatment. Further study showed that the best comprehensive properties could be obtained after 180˚C/2h annealed, the results were listed as follows: the tensile strength of 328 MPa, yield strength of 256 MPa, the elongation was 16.4%, intergranular corrosion mass loss was 18.7 mg/cm2, corrosion depth of 48 um when the cold deformation of 20% and annealing at 180˚C/2h.

文章引用: 李严法 , 戴青松 , 李江宇 , 邓运来 (2015) 5083-H321铝合金板材生产工艺研究。 材料科学, 5, 134-143. doi: 10.12677/MS.2015.53019

参考文献

[1] Miller, W.S., Zhuang, L., Bottema, J., et al. (2000) Recent development in aluminium alloys for the automotive industry. Materials Science and Engineering: A, 280, 37-49.

[2] Williams, J.C. and Starke, E.A. (2003) Progress in structural materials for aerospace systems. Acta Materialia, 51, 5775-5799.

[3] 詹志强 (2013) 铝合金汽车车身板应用现状及需求前景. 有色金属加工, 6, 1-5.

[4] 蒋海春, 叶凌英, 张新明, 等 (2013) 5059 铝合金均匀化金属间相的演变. 中国有色金属学报: 英文版, 12, 3553-3560.

[5] Davis, J.R. (1999) Corrosion of aluminum and aluminum alloys. ASM International, Geauga County.

[6] 赵伟 (2008) 船用高镁铝合金的组织和耐蚀性能研究. 硕士论文, 中南大学, 长沙.

[7] 于莉莉, 张星翔, 赵永军, 等 (2008) 5083-H321 铝合金厚板生产工艺研究. 轻合金加工技术, 36, 20-22.

[8] 魏小华 (2012) 5052H32板材的稳定化退火工艺研究. 热加工工艺, 41, 159-160.

[9] Duan, X. and Sheppard, T. (2002) Influence of forming parameters on the final subgrain size during hot rolling of aluminium alloys. Journal of Materials Processing Technology, 130-131, 245-249.

[10] Lin, S.P., Nie, Z.R., Huang, H., et al. (2010) Annealing behavior of a modified 5083 aluminum alloy. Materials and Design, 31, 1607-1612.

[11] Lee, Y.B., Dong, H.S., Park, K.-T., et al. (2004) Effect of annealing temperature on microstructures and mechanical properties of a 5083 Al alloy deformed at cryogenic temperature. Srcipta Mteralia, 51, 355-359.

[12] 于国林, 张占锋, 赵永军, 等 (2009) 5083铝合金H2n状态板材退火工艺研究. 轻合金加工技术, 6, 21-32

[13] 齐国栋, 杨鑫, 师雪飞, 等 (2010) 退火制度对冷轧和温轧的5083铝合金组织性能的影响. 轻合金, 9, 70-72.

分享
Top