三维BiOCl花状纳米材料的合成及其光催化性能研究
Hydrothermal Synthesis and High Photocatalytic Activity of 3D BiOCl Hierarchical Nanostructures

作者: 任 俊 , 苗林青 , 曹 凤 , 田仁秀 , 秦高梧 :东北大学,材料各向异性与织构教育部重点实验室,辽宁 沈阳;

关键词: 半导体BiOCl纳米材料溶剂热合成光催化剂Semiconductor BiOCl Nanomaterials Solvothermal Method Photocatalysts

摘要:
本实验研究以Bi(NO3)3和KCl为反应物,采用简单溶剂热法合成了新颖的三维花状BiOCl纳米分级结构。BiOCl纳米分级结构的形貌强烈依赖于反应条件,例如KCl/Bi(NO3)3比例、有机溶剂存在与否以及水热反应时间。运用X射线衍射(XRD)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和N2吸附脱附等表征手段对实验样品进行了表征。而且,光催化活性测试实验表明所合成的花状BiOCl纳米分级结构对罗丹明B(RhB)和甲基橙(MO)染料水溶液的降解表现出很高的活性。有趣的是,样品对RhB碱性染料的降解比MO酸性染料更加迅速,可能是由于BiOCl纳米花状结构表面的负电荷因静电吸引作用而对呈正电性的RhB染料有机基团表现出很高的选择吸附性。

Abstract: Novel three-dimensional (3D) flowerlike BiOCl nanoarchitectures were synthesized via a facile solvothermal process only usingBi(NO3)3 and KCl as precursors. The morphology of BiOCl nanoarchitecture is strongly dependent on the reaction conditions such as the ratio of KCl/Bi(NO3)3, presence of organic solvent, and hydrothermal time. The products were characterized by XRD, SEM, TEM and nitrogen sorption. Furthermore, the photocatalytic activity experiment illustrated that as-synthesized flowerlike BiOCl nanoarchitectures exhibited an excellent photocatalytic activity for the degradation of RhB and MO dye aqueous solution. Interestingly, the degradation of RhB basic dyes is faster compared to that of MO acid dyes. That is due to the fact that the surface negative charges of BiOCl nanoflowers present good selectivity toward positive RhB dye organic groups because of the electrostatic attraction.

文章引用: 任 俊 , 苗林青 , 曹 凤 , 田仁秀 , 秦高梧 (2015) 三维BiOCl花状纳米材料的合成及其光催化性能研究。 纳米技术, 5, 40-48. doi: 10.12677/NAT.2015.52006

参考文献

[1] 余长林, 杨凯, 舒庆, Yu, J.C., 操芳芳, 李鑫 (2011) WO3/ZnO复合光催化剂的制备及其光催化性能. 催化学报, 4, 555-565.

[2] Tong, H., Ouyang, S.X., Bi, Y.P., Umezawa, N., Oshikiri, M. and Ye, J.H. (2012) Na-no-photocatalytic materials: Possibilities and challenges. Advanced Materials, 24, 229-251.

[3] Chen, C.C., Ma, W.H. and Zhao, J.C. (2010) Semiconductor-mediated photodegradation of pollutants under visible- light irradiation. Chemical Society Reviews, 39, 4206-4219.

[4] Chen, X.B., Li, C., Grätzel, M., Kostecki, R. and Mao, S.S. (2012) Nanomaterials for renewable energy production and storage. Chemical Society Reviews, 41, 7909-7937.

[5] Cao, S., Guo, C., Lv, Y., Guo, Y. and Liu, Q. (2009) A novel BiOCl film with flowerlike hierarchical structures and its optical properties. Nanotechnology, 20, 275702.

[6] Zhang, K.L., Liu, C.M., Huang, F.Q., Zheng, C. and Wang, W.D. (2006) Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Applied Catalysis B: Environmental, 68, 125-129.

[7] 刘红旗, 顾晓娜, 陈锋, 张金龙 (2011) BiOCl纳米片微球的制备及其形成机理. 催化学报, 1, 129-134.

[8] Cao, F., Wang, J.M., Tu, W.H., Lv, X., Li, S. and Qin, G.W. (2015) Uniform Bi2O2CO3 hierarchical nanoflowers: Solvothermal synthesis and photocatalytic properties. Functional Materials Letters, 8, 1550021.

[9] 朱蕾, 王其召, 袁坚, 上官文峰 (2009) Bi(Nb)OCl光催化剂的制备及其可见光降解罗丹明B溶液的性能. 分子催化, 4, 362-365.

[10] Gondal, M.A., Chang, X.F. and Yamani, Z.H. (2010) UV-light induced photocatalytic decolorization of Rhodamine 6G molecules over BiOCl from aqueous solution. Chemical Engineering Journal, 165, 250-257.

[11] Zheng, Y.Z., Tao, X., Wang, L.X., Xu, H., Hou, Q., Zhou, W.L. and Chen, J.F. (2010) One-pot synthesis of uniform TiO2 nanorods and monodisperse TiO2. Chemistry of Materials, 22, 928-932.

[12] Kang, T.S., Smith, A.P., Taylor, B.E. and Durstock, M.F. (2009) Fabrication of highly-ordered TiO2 nanotube arrays and their use in dye-sensitized solar cells. Nano Letters, 9, 601-606.

[13] Ota, J.R. and Srivastava, S.K. (2007) Tartaric acid assisted growth of Sb2S3 nanorods by a simple wet chemical method. Crystal Growth & Design, 7, 343-347.

[14] Deng, Z.T., Chen, D., Peng, B. and Tang, F.Q. (2008) From bulk metal Bi to two-dimensional well-crystallized BiOX (X = Cl, Br) micro- and nanostructures: Synthesis and characterization. Crystal Growth & Design, 8, 2995-3003.

[15] Sheldrick, W.S. and Wachhold, M. (1997) Solventothermal synthesis of solid-state chalcogenidometalates. Angewandte Chemie International Edition, 36, 206-224.

[16] Feldmann, C. and Metzmacher, C. (2001) Polyol mediated synthesis of nanoscale MS particles (M = Zn, Cd, Hg). Journal of Materials Chemistry, 11, 2603-2606.

[17] Xiong, Y.J., Washio, I., Chen, J.Y., Cai, H.G., Li, Z.Y. and Xia, Y.N. (2006) Poly(vinyl pyrrolidone): A dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir, 22, 8563- 8570.

[18] Yang, H.G., Liu, G., Qiao, S.Z., Sun, C.H., Jin, Y.G., Smith, S.C., Zou, J., Cheng, H.M. and Lu, G.Q. (2009) Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets. Journal of the American Chemical Society, 131, 4078-4082.

[19] Peng, X.G., Manna, L., Yang, W.D., Wickham, J., Scher, E., Kadavanich, A. and Alivisatos, A.P. (2000) Shape control of CdSe nanocrystals. Nature, 404, 59-61.

[20] 丁更新, 周思敏, 刘健翔, 杨辉 (2010) 氧化钛/全氟磺酸树脂杂化薄膜的制备与光催化性能. 硅酸盐学报, 1, 74- 77.

[21] 刘晓霞, 樊彩梅, 王韵芳, 王雅文, 张小超, 梁镇海 (2012) 花球状BiOCl薄膜的低温制备及其光催化性能. 中国科学: 化学, 8, 1145-1151.

分享
Top