正磁阻体系研究进展
Research Progress in Positive Magnetoresistance System

作者: 郜 婵 , 张建武 :中国科学技术大学物理系,安徽 合肥;

关键词: 磁致电阻正磁阻效应线性磁阻超磁阻效应金属颗粒膜稀磁半导体拓扑绝缘体半金属Magnetoresistance Positive Magnetoresistance Linear Magnetoresistance Extraordinary Magnetoresistance Metal Particle Film Diluted Magnetic Semiconductors Topological Insulators Semi-Metallic

摘要:
近十几年来,磁致电阻效应及其机理的研究一直是凝聚态物理领域的研究热点之一。随着具有磁阻效应的各种新材料及新结构体系的合成、制备与发现,磁阻体系及其磁阻机制的复杂性也不断被展现出来。在已发现的各类磁阻体系及磁阻效应中,正磁阻体系及正磁阻效应的研究,作为磁阻研究的一个分支,在磁阻体系、磁阻机理和新型磁阻器件应用方面,均具有特殊的研究价值。本文综述了正磁阻体系、正磁阻效应及其磁阻机理的研究进展,展示了正磁阻体系、正磁阻效应及其机理的多样性,并简要指出了正磁阻体系研究中需要关注的一些共性问题。

Abstract: Over the last decade, the research of magnetoresistance effect and its mechanism has been one of the research hotspot of condensed matter physics. With the synthesis, preparation and discovery of a variety of new materials and new structural systems which possess magnetoresistance effect, its mechanism and the complexity of magnetoresistance system are also constantly being unfolded. In all kinds of magnetoresistance system and magnetoresistance effect which have been found, the research of positive magnetoresistance system and positive magnetoresistance effect, as a branch of the magnetoresistance research system, has special research value in the magnetoresistance system, magnetoresistance mechanism and application of new magnetoresistive devices. This paper reviews the progress of positive magnetoresistance system, magnetoresistance effect and its mechanism, shows the diversity of the positive magnetoresistance system, positive magnetoresis-tance effect and its mechanism, and briefly points out some common problems that need to be fo-cused in the studies of the positive magnetoresistance system.

文章引用: 郜 婵 , 张建武 (2015) 正磁阻体系研究进展。 凝聚态物理学进展, 4, 34-54. doi: 10.12677/CMP.2015.42005

参考文献

[1] Katyalt, O.P. and Gerritsen, A.N. (1969) Investigation of hall resistivity and magnetoresistance of cadmium and cad-mium-zinc crystals. Physical Review, 178, 1037-1042.

[2] Gurgenishvifi, G.E., Kharadze, G.A. and Nersesian, A.A. (1969) On the theory of low-temperature magnetoresistance of metals with paramagnefic impurities. Journal of Low Temperature Physics, 1, 633-639.

[3] Kostopoul, D. (1972) Magnetoresistance of magnetite. Physica Status Solidi (a), 9, 523-527.

[4] Rowlands, J.A. and Woods, S.B. (1972) Low-field magnetoresistance of palladium alloys. Physical Review B, 6, 1162- 1168.

[5] Khosla, B.P. and Fischer, J.R. (1970) Magnetoresistance in degenerate CdS: Localized magnetic moments. Physical Review B, 2, 4084-4097.

[6] Schmidt, D.R., Petukhov, A.G., Foygel, M., Ibbetson, J.P. and Allen, S.J. (1999) Fluctuation controlled hopping of bound magnetic polarons in ErAs:GaAs nanocomposites. Physical Review Letters, 82, 823-826.

[7] Lee, M., Rosenbaum, T.F., Saboungi, M.L. and Schnyders, H.S. (2002) Band-gap tuning and linear magnetoresistance in the silver chalcogenides. Physical Review Letters, 88, Article ID: 066602.

[8] Hu, R.W., Thomas, K.J., Lee, Y., Vogt, T., Choi, E.S., Mitrović, V.F., Hermann, R.P., Grandjean, F., Canfield, P.C., Kim, J.W., Goldman, A.I. and Petrovic, C. (2008) Colossal positive magnetoresistance in a doped nearly magnetic semiconductor. Physical Review B, 77, Article ID: 085212.

[9] Palstra, T.T.M., Menovsky, A.A. and Mydosh, J.A. (1986) Anisotropic electrical resistivity of the magnetic heavy- fermion superconductor URu2Si2. Physical Review B, 33, 6527-6530.

[10] 张建武, 张权 (2009) 一种正巨磁电阻复合功能陶瓷材料及制备方法. 中国专利: CN 101481244A.

[11] Coleridge, P.T. (1987) Magnetoresistance and growth of the coherent state in CeCu6. Journal of Physics F: Metal Physics, 17, L79-L85.

[12] Markiewicz, R.S. and Rollins, C.J. (1984) Localization and electron-interaction effects in a two-dimensional metal with strong spin-orbit scattering: Pd films. Physical Review B, 29, 735-747.

[13] Ji, W.J., Xu, J., Jiao, L., Wang, J.F., Gu, Z.B., Chen, Y.B., Zhou, J., Yao, S.H. and Zhang, S.T. (2013) The structures and positive magnetoresistance of metallic Sr2CrWO6 epitaxial thin film. Ceramics International, 39, 9305-9308.

[14] Ruvalds, J. and Sheng, Q.G. (1988) Magnetoresistance in heavy-fermion alloys. Physical Review B, 37, 1959-1968.

[15] Mookerjee, A. (1980) Magnetoresistance of spin-glass alloys. Journal of Physics F: Metal Physics, 10, 1559-1566.

[16] Liu, X.C., Chen, Z.Z., Shi, E.W., Liao, D.Q. and Zhou, K.J. (2011) Room-temperature anomalous Hall effect and magnetroresistance in (Ga, Co)-codoped ZnO diluted magnetic semiconductor films. Chinese Physics B, 20, Article ID: 037501.

[17] Shlimak, A.B., Golosov, D.I., Friedl, K.J. and Kravchenko, S.V. (2012) Influence of spin polarization on resistivity of a two-dimensional electron gas in Si MOSFET at metallic densities. EPL, 97, Article ID: 37002.

[18] Dietrich, S., Vitkalov, S., Dmitriev, D.V. and Bykov, A.A. (2012) Quantum lifetime of two-dimensional electrons in a magnetic field. Physical Review B, 85, Article ID: 115312.

[19] Shlimak, I., Khondaker, S.I., Pepper, M. and Ritchie, D.A. (2000) Influence of parallel magnetic fields on a single-layer two-dimensional electron system with a hopping mechanism of conductivity. Physical Review B, 61, 7253- 7256.

[20] Renard, V., Kvon, Z.D., Gusev, G.M. and Portal, J.C. (2004) Large positive magnetoresistance in a high-mobility two-dimensional electron gas: Interplay of short- and long-range disorder. Physical Review B, 70, Article ID: 033303.

[21] Wu, J., Peng, J.L., Hamilton, J.J. and Greene, R.L. (1994) Variable-range hopping and positive magnetoresistance in insulating Y1-xPrxBa2Cu3O7 crystals. Physical Review B, 49, 690-693.

[22] Syzranov, S.V., Moor, A. and Efetov, K.B. (2012) Strong quantum interference in strongly disordered bosonic insulators. Physical Review Letters, 108, Article ID: 256601.

[23] Nguyen, H.Q., Hollen, S.M., Stewart, M.D., Shainline, J., Yin, A.J., Xu, J.M. and Valles, J.M. (2009) Observation of giant positive magnetoresistance in a cooper pair insulator. Physical Review Letters, 103, Article ID: 157001.

[24] Jammalamadaka, S.N., Mohapatra, N., Das, S.D. and Sampathkumaran, E.V. (2009) Enhancement of positive magnetoresistance following a magnetic-field-induced ferromagnetic transition in the intermetallic compound Tb5Si3. Physical Review B, 79, Article ID: 060403.

[25] Leng, Q., Kaiser, C., Guo, Y.M., Pakala, M. and Mao, S.N. (2009) Magnetoresistive sensors having an improved free layer. US8498084 B1.

[26] Saito, M., Nishiyama, Y., Ide, Y., Umetsu, E., Hasegawa, N. and Hayakawa, Y. (2010) CPP GMR head with antiferromagetic layer disposed at rear of ferromagnetic pinned layer. US7800867 B2.

[27] Solin, S.A., Thio, T., Hines, D.R., Kawano, M., Oda, N. and Sano, M. (1999) Large enhancement of the giant magnetoresistance in inhomogeneous semiconductors: Dependence on magnetic field direction. Journal of Applied Physics, 85, 5789.

[28] Thio, T., Solin, S.A., Bennett, J.W., Hines, D.R., Kawano, M., Oda, N. and Sano, M. (1998) Giant magnetoresistance in zero-band-gap Hg1-xCdxTe. Physical Review B, 57, Article ID: 12239.

[29] Thio, T., Solin, S.A., Bennett, J.W., Hines, D.R., Kawano, M., Oda, N. and Sano, M. (1998) Giant magnetoresistance in Hg1-xCdxTe and applications for high density magnetic recording. Journal of Crystal Growth, 184, 1293-1296.

[30] Thio, T. and Solin, S.A. (1998) Giant magnetoresistance enhancement in inhomogeneous semiconductors. Applied Physics Letters, 72, 3497-3499.

[31] Solin, S.A., Thio, T., Hines, D.R. and Heremans, J.J. (2000) Enhanced room-temperature geometric magnetoresistance in inhomogeneous narrow-gap semiconductors. Science, 289, 1530-1532.

[32] Solin, S.A., Thio, T. and Hines, D.R. (2000) Controlled GMR enhancement from conducting inhomogeneities in non-magnetic semiconductors. Physica B, 279, 37-40.

[33] Hewett, T.H. and Kusmartsev, F.V. (2010) Geometrically enhanced extraordinary magnetoresistance in semiconductor-metal hybrids. Physical Review B, 82, Article ID: 212404.

[34] Pugsley, L.M., Ram-Mohan, L.R. and Solin, S.A. (2013) Extraordinary magnetoresistance in two and three dimensions: Geometrical optimization. Journal of Applied Physics, 113, Article ID: 064505.

[35] Rowe, A.C.H. and Solin, S.A. (2005) Importance of interface sampling for extraordinary resistance effects in metal semiconductor hybrids. Physical Review B, 71, Article ID: 235323.

[36] Branford, W.R., Husmann, A., Solin, S.A., Clowes, S.K. and Zhang, T. (2005) Geometric manipulation of the high-field linear magnetoresistance in InSb epilayers on GaAs (001). Applied Physics Letters, 86, Article ID: 202116.

[37] Holz, M., Kronenwerth, O. and Grundler, D. (2005) Enhanced sensitivity due to current redistribution in the Hall effect of semiconductor-metal hybrid structures. Applied Physics Letters, 86, Article ID: 072513.

[38] Oszwaldowski, M., El-Ahmar, S. and Jankowski, J. (2012) Extraordinary magnetoresistace in planar configuration. Journal of Physics D: Applied Physics, 45, Article ID: 145002.

[39] Sun, J. and Kosel, J. (2013) Influence of semiconductor/metal interface geometry in an EMR sensor. IEEE Sensors Journal, 13, 664-669.

[40] Holz, M., Kronenwerth, O. and Grundler, D. (2003) Magnetoresistance of semiconductor-metal hybrid structures: The effects of material parameters and contact resistance. Physical Review B, 67, Article ID: 195312.

[41] 黄钊洪 (1999) 锑-铟系化合物半导体磁阻式电流传感器及电流传感方法. 中国专利: CN 1235276A.

[42] Lu, J.M., Zhang, H.J., Shi, W., Wang, Z., Zheng, Y., Zhang, T., Wang, N., Tang, Z.K. and Sheng, P. (2011) Graphene magnetoresistance device in van der Pauw geometry. Nano Letters, 11, 2973-2977.

[43] Wan, C.H., Zhang, X.Z., Gao, X.L., Wang, J.M. and Tan, X.Y. (2011) Geometrical enhancement of low-field magnetoresistance in silicon. Nature, 477, 304-307.

[44] Delmo, M.P., Yamamoto, S., Kasai, S., Ono, T. and Kobayashi, K. (2009) Large positive magnetoresistive effect in silicon induced by the space-charge effect. Nature, 457, 1112-1115.

[45] Delmo, M.P., Kasai, S., Kobayashi, K. and Ono, T. (2009) Space-charge-effect-induced large magnetoresistance in silicon. Journal of Physics: Conference: Conference Series, 193, Article ID: 012001.

[46] Wolfe, C.M., Stillman, G.E. and Ross, J.A. (1972) High apparent mobility in inhomogeneous semiconductors. Journal of the Electrochemical Society, 119, 250-255.

[47] Moussa, J., Ram-Mohan, L.R., Sullivan, J., Zhou, T., Hines, D.R. and Solin, S.A. (2001) Finite-element modeling of extraordinary magnetoresistance in thin film semiconductors with metallic inclusions. Physical Review B, 64, Article ID: 184410.

[48] Xu, R., Husmann, A., Rosenbaum, T.F., Saboungi, M.L., Enderby, J.E. and Littlewood, P.B. (1997) Large magnetoresistance in non-magnetic silver chalcogenides. Nature, 390, 57-60.

[49] Jie, X.U. and Zhang, D.X. (2011) Longitudinal magnetoresistance and “Chiral” coupling in silver chalcogenides. Communications in Theoretical Physics, 55, 532-536.

[50] Yang, F.X., Xiong, S.T., Xia, Z.C., Liu, F.X., Han, C. and Zhang, D.M. (2012) Two-step synthesis of silver selenide semiconductor with a linear magnetoresistance effect. Semiconductor Science and Technology, 27, Article ID: 125017.

[51] Ogorelec, Z., Hamzic, A. and Basletic, M. (1999) On the optimization of the large magnetoresistance of Ag2Se. Europhysics Letters, 46, 56-61.

[52] Liang, B.Q., Chen, X., Wang, Y.J. and Tang, Y.J. (2000) Abnormal magnetoresistance effect in self-doped Ag2+δTe thin films (δ ≤ 0.25). Physical Review B, 61, 3239-3242.

[53] Abrikosov, A.A. (2003) Quantum linear magnetoresistance solution of an old Mystery. Journal of Physics A: Mathematical and General, 36, 9119-9131.

[54] Abrikosov, A.A. (2000) Quantum linear magnetoresistance. Europhysics Letters, 49, 789-793.

[55] Abrikosov, A.A. (1998) Quantum magnetoresistance. Physical Review B, 58, 2788-2794.

[56] Parish, M.M. and Littlewood, P.B. (2003) Non-saturating magnetoresistance in heavily disordered semiconductors. Nature, 426, 162-165.

[57] Parish, M.M. and Littlewood, P.B. (2005) Classical magnetotransport of inhomogeneous conductors. Physical Review B, 72, Article ID: 094417.

[58] Bulgadaev, S.A. and Kusmartsev, F.V. (2005) Large linear magnetoresistivity in strongly inhomogeneous planar and layered systems. Physics Letters A, 342, 188-195.

[59] Wang, C.M. and Lei, X.L. (2012) Linear magnetoresistance on the topological surface. Physical Review B, 86, Article ID: 035442.

[60] 吕衍凤, 陈曦, 薛其坤 (2012) 拓扑绝缘体简介. 物理与工程, 1, 7-18.

[61] 吕莉, 张敏, 杨立芹, 羊新胜, 赵勇 (2013) 拓扑绝缘体 Bi2Se3单晶体的研究进展. 材料导报A, 6, 7-12.

[62] 李辉, 彭海琳, 刘忠范 (2012) 拓扑绝缘体二维纳米结构与器件. 物理化学学报, 10, 2423-2435.

[63] Zhang, W., Yu, R., Feng, W.X., Yao, Y.G., Weng, H.M., Dai, X. and Fang, Z. (2011) Topological aspect and quantum magnetoresistance of β-Ag2Te. Physical Review Letters, 106, Article ID: 156808.

[64] He, H.T., Liu, H.C., Li, B.K., Guo, X., Xu, Z.J., Xie, M.H. and Wang, J.N. (2013) Disorder-induced linear magnetoresistance in (221) topological insulatorBi2Se3 films. Applied Physics Letters, 103, Article ID: 031606.

[65] Wang, X.L., Du, Y., Dou, S.X. and Zhang, C. (2012) Room temperature giant and linear magnetoresistance in topological insulator Bi2Te3 nanosheets. Physical Review Letters, 108, Article ID: 266806.

[66] Tang, H., Liang, D., Qiu, R.L. and Gao, X.P. (2011) Two-dimensional transport-induced linear magneto-resistance in topological insulator Bi2Se3 nanoribbons. ACS Nano, 5, 7510-7516.

[67] Yan, Y., Wang, L.X., Yu, D.P. and Liao, Z.M. (2013) Large magnetoresistance in high mobility topological insulator Bi2Se3. Applied Physics Letters, 103, Article ID: 033106.

[68] Zhang, H.B., Yu, H.L., Bao, D.H., Li, S.W., Wang, C.X. and Yang, G.W. (2012) Weak localization bulk state in a topological insulator Bi2Te3 film. Physical Review B, 86, Article ID: 075102.

[69] Hor, Y.S., Qu, D., Pong, N. and Cava, R.J. (2010) Low temperature magnetothermoelectric effect and magnetoresistance in Te vapor annealed Bi2Te3. Journal of Physics: Condensed Matter, 22, Article ID: 375801.

[70] Chiu, S.P. and Lin, J.J. (2013) Weak antilocalization in topological insulator Bi2Te3 microflakes. Physical Review B, 87, Article ID: 035122.

[71] Hamlin, J.J., Jeffries, J.R., Butch, N.P., Syers, P., Zocco, D.A., Weir, S.T., Vohra, Y.K., Paglione, J. and Maple, M.B. (2012) High pressure transport properties of the topological insulator Bi2Se3. Journal of Physics: Condensed Matter, 24, Article ID: 035602.

[72] Kastl, C., Guan, T., He, X.Y., Wu, K.H., Li, Y.Q. and Holleitner, A.W. (2012) Local photocurrent generation in thin films of the topological insulator Bi2Se3. Applied Physics Letters, 101, Article ID: 251110.

[73] Wang, C.M. and Lei, X.L. (2012) Linear magnetoresistance on the topological surface. Physical Review B, 86, Article ID: 035442.

[74] He, H.T., Liu, H.C., Li, B.K., Guo, X. and Xu, Z.J. (2013) Disorder-induced linear magnetoresistance in (221) topological insulatorBi2Se3 films. Applied Physics Letters, 103, Article ID: 031606.

[75] Yuasa, S., Nagahama, T., Fukushima, A., Suzuki, Y. and Ando, K. (2004) Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nature Materials, 3, 868-871.

[76] Nagahama, T., Yuasa, S., Tamura, E. and Suzuki, Y. (2005) Spin-dependent tunneling in magnetic tunnel junctions with a layered antiferromagnetic Cr(001) spacer: Role of band structure and interface scattering. Physical Review Letters, 95, Article ID: 086602.

[77] Saito, H., Yuasa, S. and Ando, K. (2005) Origin of the tunnel anisotropic magnetoresistance in Ga1-xMnxAs/ZnSe/ Ga1-xMnxAs magnetic tunnel junctions of II-VI/III-V heterostructures. Physical Review Letters, 95, Article ID: 086604.

[78] Saito, H., Yamamoto, A., Yuasa, S. and Ando, K. (2008) High tunneling magnetoresistance in Fe/GaOx/Ga1-xMnxAs with metal/insulator/semiconductor structure. Applied Physics Letters, 93, Article ID: 172515.

[79] Parkin, S.S.P., Kaiser, C., Panchula, A., Ricei, P.M., Hughes, B., Samant, M. and Yang, S.H. (2004) Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nature Materials, 3, 862-867.

[80] Mathon, J. (1997) Tight-binding theory of tunneling giant magnetoresistance. Physical Review B, 56, Article ID: 11810.

[81] Yuan, L., Shen, J.X., Anderson, G.W. and Christopher, N.G. (2011) Method to improve reader stability and writer overwrite by patterned wafer annealing. US 20110102949 A1.

[82] Chung, S.H., Munoz, M., Garcıa, N., Egelhoff, W.F. and Gomez, R.D. (2002) Universal scaling of ballistic magnetoresistance in magnetic nanocontacts. Physical Review Letters, 89, Article ID: 287203.

[83] Garca, N., Muñoz, M., Qian, G.G., Rohrer, H., Saveliev, I.G. and Zhao, Y.W. (2001) Ballistic magnetoresistance in a magnetic nanometer sized contact: An effective gate for spintronics. Applied Physics Letters, 79, 4550-4552.

[84] Chopra, H.D. and Hua, S.Z. (2002) Ballistic magnetoresistance over 3000% in Ni nanocontacts at room temperature. Physical Review B, 66, Article ID: 020403.

[85] Hua, S.Z. and Chopra, H.D. (2003) 100,000 % ballistic magnetoresistance in stable Ni nanocontacts at room temperature. Physical Review B, 67, Article ID: 060401(R).

[86] Sullivan, M.R., Boehm, D.A., Ateya, D.A., Hua, S.Z. and Chopra, H.D. (2005) Ballistic magnetoresistance in nickel single-atom conductors without magnetostriction. Physical Review B, 71, Article ID: 024412.

[87] Honda, S. and Nagata, Y. (2003) Magnetic and transport properties of alternately deposited Co-Bi films. Journal of Applied Physics, 93, 5538.

[88] Honda, S., Ishikawa, T., Takai, K., Mitarai, Y. and Harada, H. (2004) En-hanced ordinary magnetoresistance in Co/Si systems. Journal of Applied Physics, 96, 5915.

[89] Viret, M., Vignoles, D., Cole, D. and Coey, J.M.D. (1996) Spin scattering in ferromagnetic thin films. Physical Review B, 53, 8464-8468.

[90] Levy, P.M. and Zhang, S. (1997) Resistivity due to domain wall scattering. Physical Review Letters, 79, 5110-5113.

[91] Radulescu, A., Ebels, U., Henry, Y., Ounadjela, K., Duvail, J.L. and Piraux, L. (2000) Magneto-resistance of a single domain wall in Co and Ni nanowires. IEEE Transactions on Magnetics, 36, 3062-3064.

[92] Sabirianov, R.F., Solanki, A.K., Burton, J.D., Jaswaland, S.S. and Tsymbal, E.Y. (2005) Domain-wall magnetoresistance of Co nanowires. Physical Review B, 72, Article ID: 054443.

[93] Sofin, R.G.S., Arora, S.K. and Shvets, I.V. (2011) Positive antiphase boundary domain wall magnetoresistance in Fe3O4 (110) heteroepitaxial films. Physical Review B, 83, Article ID: 134436.

[94] Hoffmann, H., Hofmann, F. and Schoepe, W. (1982) Mag-netoresistance and non-ohmic conductivity of thin platinum films at low temperatures. Physical Review B, 25, 5563-5565.

[95] Markiewicz, R.S. and Rollins, C.J. (1984) Localization and electron-interaction effects in a two-dimensional metal with strong spin-orbit scattering: Pd films. Physical Review B, 29, 735-747.

[96] White, A.E., Dynes, R.C. and Garno, J.P. (1984) Low-temperature magnetoresistance in two-dimensional magnesium films. Physical Review B, 29, 3694-3696.

[97] Akinaga, H., Mizuguchi, M., Ono, K. and Oshima, M. (2000) Room-temperature thousand fold magnetoresistance change in MnSb granular films: Magnetoresistive switch effect. Applied Physics Letters, 76, 357-359.

[98] Barandiarán, J.M., Chernenko, V.A., Lázpita, P., Gutiérrez, J. and Feuchtwanger, J. (2009) Effect of martensitic transformation and magnetic field on transport properties of Ni-Mn-Ga and Ni-Fe-Ga Heusler alloys. Physical Review B, 80, Article ID: 104404.

[99] Schmidt, G., Richter, G., Grabs, P., Gould, C., Ferrand, D. and Molenkamp, L.W. (2001) Large magnetoresistance effect due to spin injection into a nonmagnetic semiconductor. Physical Review Letters, 87, Article ID: 227203.

[100] Mermer, Ö., Veeraraghavan, G., Francis, T.L., Sheng, Y., Nguyen, D.T., Wohlgenannt, M., Köhler, A., Al-Suti, M.K. and Khan, M.S. (2005) Large magnetoresistance in nonmagnetic π-conjugated semiconductor thin film devices. Physical Review B, 72, Article ID: 205202.

[101] Li, A.P., Zeng, C., Benthem, K.V., Chisholm, M.F., Shen, J., Nageswara Rao, S.V.S., Dixit, S.K., Feldman, L.C., Petukhov, A.G., Foygel, M. and Weitering, H.H. (2007) Dopant segregation and giant magnetoresistance in manganese-doped germanium. Physical Review B, 75, Article ID: 201201.

[102] Hu, R.W., Thomas, K.J., Lee, Y., Vogt, T., Choi, E.S., Mitrović, V.F., Hermann, R.P., Grandjean, F., Canfield, P.C., Kim, J.W., Goldman, A.I. and Petrovic, C. (2008) Colossal positive magnetoresistance in a doped nearly magnetic semiconductor. Physical Review B, 77, Article ID: 085212.

[103] L莫伦坎普, G施米特 (2004) 具半磁性连接之半导体组件. 中国专利: CN 1509413A.

[104] Foygel, M., Niggemann, J. and Petukhov, A.G. (2007) Atomic spin scattering and giant magnetoresistancein magnetic semiconductors. IEEE Transactions on Magnetics, 43, 3040-3042.

[105] Petukhov, A.G. and Foygel, M. (2000) Bound magnetic polaron hopping and giant magnetoresistance in magnetic semiconductors and nanostructures. Physical Review B, 62, 520.

[106] El-Hilo, M., Chantrell, R.W. and O’Grady, K. (1998) A model of interaction effects in granular magnetic solids. Journal of Applied Physics, 84, 5114-5122.

[107] 任尚坤, 张凤鸣, 都有为 (2004) 半金属磁性材料. 物理学进展, 4, 381-397.

[108] Liu, K., Chien, C.L. and Searson, P.C. (1998) Finite-size effects in bismuth nanowires. Physical Review B, 58, 14681- 14684.

[109] Li, D.X., Haga, Y., Shida, H., Suzuki, T. and Kwon, Y.S. (1996) Electrical transport properties of semimetallic GdX single crystals (X=P, As, Sb, and Bi). Physical Review B, 54, 10483-10491.

[110] Butch, N.P., Syers, P., Kirshenbaum, K., Hope, A.P. and Paglione, J. (2011) Superconductivity in the topological semimetal YPtBi. Physical Review B, 84, Article ID: 220504.

[111] Song, S.N., Wang, X.K., Chang, R.P.H. and Ketterson, J.B. (1994) Electronic properties of graphite nanotubules from galvanomagnetic effects. Physical Review Letters, 72, 697-700.

[112] Wang, Z.M., Xing, D.Y., Zhang, S.Y., Xu, Q.Y., Van Beal, M. and Du, Y.W. (2007) Magnetic-field-induced semimetal-insulator-like transition in highly oriented pyrolitic graphite. Chinese Physics Letters, 24, 199-202.

[113] Ishiwata, S., Shiomi, Y., Lee, J.S., Bahramy, M.S., Suzuki, T., Uchida, M., Arita, R., Taguchi, Y. and Tokura, Y. (2013) Extremely high electron mobility in a phonon-glass semimetal. Nature Materials, 12, 512-517.

[114] Manyala, N., Sidis, Y., Di Tusa, J.F., Aeppli, G., Young, D.P. and Fisk, Z. (2000) Magnetoresistance from quantum interference effects in ferromagnets. Nature, 404, 581-584.

[115] Guevara, J., Vildosola, V., Milano, J. and Llois, A. (2004) Half-metallic character and electronic properties of inverse magnetoresistant Fe1-xCoxSi alloys. Physical Review B, 69, Article ID: 184422.

[116] Chattopadhyay, M.K., Roy, S.B., Chaudhary, S., Singh, K.J. and Nigam, A.K. (2002) Magnetic response of Fe1-xCoxSi alloys: A detailed study of magnetization and magnetoresistance. Physical Review B, 66, Article ID: 174421.

[117] Burkov, A.T., Zyuzin, A.Y., Nakama, T. and Yagasaki, K. (2004) Anomalous magnetotransport in (Y1-xGdx)Co2 alloys: Interplay of disorder and itinerant metamagnetism. Physical Review B, 69, Article ID: 144409.

[118] 李孟委, 刘泽文, 刘双红, 孙剑文 (2012) MEMS巨磁阻式高度压力传感器. 中国专利: CN 202853815 U.

[119] Fukuma, Y., Odawara, F., Asada, H. and Koyanagi, T. (2008) Effects of annealing and chemical doping on magnetic properties in Co-doped ZnO films. Physical Review B, 78, Article ID: 104417.

[120] Liang, W.J., Yuhas, B.D. and Yang, P.D. (2009) Magnetotransport in Co-Doped ZnO nanowires. Nano Letters, 9, 892- 896.

[121] Xu, Q.Y., Hartmann, L. and Schmidt, H. (2007) S-d exchange interaction induced magnetoresistance in magnetic ZnO. Physical Review B, 76, Article ID: 134417.

[122] Tian, Y.F., Yan, S.S., Cao, Q., Deng, J.X., Chen, Y.X., Liu, G.L., Mei, L.M. and Qiang, Y. (2009) Origin of large positive magnetoresistance in the hard-gap regime of epitaxial Co-doped ZnO ferromagnetic semiconductors. Physical Review B, 79, Article ID: 115209.

[123] Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshihara, S. and Koinuma, H. (2001) Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science, 291, 854-856.

[124] Xue, Q.Z., Zhang, X. and Zhu, D.D. (2003) Room-temperature positive magnetoresistance in micro-sized Cox-C1-x composites. Physica B, 334, 216-220.

[125] Xue, Q.Z. and Zhang, X. (2003) Positive magnetoresistance in micro-sized granular Nix-C1–x composites. Physics Letters A, 313, 461-466.

[126] Xue, Q.Z., Zhang, X. and Zhu, D.D. (2004) Positive linear magnetoresistance in Fex-C1-x composites. Journal of Magnetism and Magnetic Materials, 270, 397-402.

[127] Zhang, X., Xue, Q.Z. and Zhu, D.D. (2004) Positive and negative linear magnetoresistance of graphite. Physics Letters A, 320, 471-477.

[128] 章晓中, 薛庆忠, 田鹏 (2004) 用PLD法制备具有室温正巨磁阻效应的镍碳薄膜材料. 中国专利: CN1487115A.

[129] 章晓中, 薛庆忠, 朱丹丹 (2003) 用PLD方法制备具有正巨磁阻效应的铁碳薄膜材料. 中国专利: CN 1421941A.

[130] 章晓中, 朱丹丹, 薛庆忠 (2003) 用PLD方法制备具有正巨磁阻效应的钴碳薄膜材料. 中国专利: CN 1412572.

[131] Poumirol, J.M., Cresti, A., Roche, S., Escoffier, W., Goiran, M., Wang, X., Li, X.L., Dai, H.J. and Raquet, B. (2010) Edge magnetotransport fingerprints in disordered graphene nanoribbons. Physical Review B, 82, Article ID: 041413.

[132] Vavro, J., Kikkawa, J.M. and Fischer, J.E. (2005) Metal-insulator transition in doped single-wall carbon nanotubes. Physical Review B, 71, Article ID: 155410.

[133] Suzuura, H. and Ando, T. (2002) Phonons and electron-phonon scattering in carbon nanotubes. Physical Review B, 65, Article ID: 235412.

[134] Weevelt, R.V., Mortet, V., Haen, J., Ruttens, B., Haesendonck, C.V., Partoens, B., Peeters, F.M. and Wagner, P. (2011) Study on the giant positive magnetoresistance and Hall effect in ultrathin graphite flakes. Physica Status Solidi A— Applications and Materials Science, 208, 1252-1258.

[135] Polyakov, D.G., Evers, F., Mirlin, A.D. and Wolfle, P. (2001) Quasiclassical magnetotransport in a random array of antidots. Physical Review B, 64, Article ID: 205306.

[136] Vavilov, M.G., Dmitriev, I.A., Aleiner, I.L., Mirlin, A.D. and Polyakov, D.G. (2004) Compressibility of a two-dimensional electron gas under microwave radiation. Physical Review B, 70, Article ID: 161306.

[137] Diaz-Pinto, C., Wang, X.M., Lee, S., Hadjiev, V.G., De, D., Chu, W.K. and Peng, H.B. (2011) Tunable magnetoresistance behavior in suspended graphitic multilayers through ion implantation. Physical Review B, 83, Article ID: 235410.

[138] Schoonus, J.J.H.M., Bloom, F.L., Wagemans, W., Swagten, H.J.M. and Koopmans, B. (2008) Extremely large magnetoresistance in boron-doped silicon. Physical Review Letters, 100, Article ID: 127202.

[139] Mallik, R., Sampathkumaran, E.V. and Paulose, P.L. (1997) Large positive magnetoresistance at low temperatures in a ferromagnetic natural multilayer, LaMn2Ge2. Applied Physics Letters, 71, 2385-2387.

[140] Ghosh, K., Ogale, S.B., Pai, S.P., Robson, M., Li, E., Jin, I., Dong, Z.W., Greene, R.L., Ramesh, R., Venkatesan, T. and Johnson, M. (1999) Positive giant magnetoresistance in a Fe3O4/SrTiO3/La 0.7Sr0.3MnO3 heterostructure. Applied Physics Letters, 73, 689-691.

[141] Johnson, B.L. and Camley, R.E. (1991) Theory of giant magnetoresistance effects in Fe/Cr multilayers: Spin-dependent scattering from impurities. Physical Review B, 44, 9997-10002.

[142] Jin, K.X., Zhao, S.G., Chen, C.L., Wang, J.Y. and Luo, B.C. (2008) Positive colossal magnetoresistance effect in ZnO/La0.7Sr0.3MnO3 heterostructure. Applied Physics Letters, 92, Article ID: 112512.

[143] Heisz, J.M. and Zaremba, E. (1996) Transverse magnetoresistance of GaAs/AlxGa1-xAs heterojunctions in the presence of parallel magnetic fields. Physical Review B, 53, 13594-13604.

[144] Nikolaev, K.R., Dobin, A.Y., Krivorotov, I.N., Cooley, W.K., Bhattacharya, A., Kobrinskii, A.L., Glazman, L.I., Wentzovitch, R.M., Dan Dahlberg, E. and Goldman, A.M. (2000) Oscillatory exchange coupling and positive magnetoresistance in epitaxial oxide heterostructures. Physical Review Letters, 85, 3728-3723.

[145] 齐藤好昭, 杉山英行, 井口智明 (2008) 自旋金属氧化物半导体场效应晶体管. 中国专利: CN 101140952A.

分享
Top