纳米银诱导的以免疫毒性为主的早期全身毒性研究
Silver Nanoparticles Induced Immunotoxicity-Based Early Systemic Toxicity

作者: 邵安良 , 王志杰 , 陈 亮 , 徐丽明 :中国食品药品检定研究院,北京;

关键词: 纳米银灌胃免疫系统毒性全身毒性Silver Nanoparticles Oral Administration Immunotoxicity Systemic Toxicity

摘要:
目的:考察纳米银对大鼠免疫系统的影响以及其他早期全身毒性反应;同时考察纳米银在体外对淋巴细胞炎性因子和免疫因子释放的影响。通过体内外试验的综合研究考察纳米银的潜在免疫系统毒性。方法:SD大鼠经连续灌胃给入低剂量(1 mg/kg)和高剂量(10 mg/kg)纳米银溶液,生理盐水溶液(对照组)。于首次给入后2小时、连续给入7天、14天及停止给入14天后分别处死大鼠,然后进行大鼠体内各脏器银元素定量测定和病理学分析、血液学及血液生化检测、相关免疫因子的检测。体外试验中,在纳米银暴露或非暴露条件下,将淋巴细胞于含或不含脂多糖的培养液中培养24小时,分析IL-6、IL-4、IgG、IgE等的含量,以考察纳米银引起的免疫系统毒性。结果和讨论:纳米银暴露组显示纳米银剂量、时间依存性的在大鼠血液及脏器组织内蓄积。与对照组相比,经口给入高剂量纳米银(10 mg/Kg)引起了大鼠淋巴细胞IgE、IgG与IL-4的显著增加;高、低剂量组给入纳米银14天停止给入14天后,血清IL-6水平与B细胞CD45RA+水平均显著增加。虽然经纳米银灌胃后大鼠组织病理学检查未发现显著的病理改变,但血糖和碱性磷酸酶的升高提示有胰脏和肝脏的损伤。血常规显示血液内银在低浓度时刺激炎性细胞反应性增加;而高浓度时则诱导细胞毒性,抑制了淋巴细胞的正常生长。在体外不同浓度纳米银(0.5 μg/mL,5 μg/mL)作用下,LPS诱导的淋巴细胞分泌IgG和IL-6显著减少。综合体内外实验结果表明,本研究所用的纳米银主要引起了大鼠以Th2型免疫毒性为主的早期全身毒性。

Abstract: Objective: To investigate the effects on immune system and other systemic toxicity of silver nano-particles (SNPs) in rats by oral exposure, and combined an in vitro study of SNPs on the release of inflammatory cytokines and immune factors in lymphocytes, to get a better understanding about potential immunotoxicity of silver nanoparticles. Methods: SD rats were orally administrated with low-dose (1 mg/kg) and high-dose (10 mg/kg) of SNPs and saline (control) respectively, and the organ and blood samples were harvested after 2 hrs (n = 9), 7 days (n = 18), 14 days (n = 18) ex-posure and14 days of post-exposure (n = 9) for determination of silver content, hematology, blood biochemistry, and immune factor assessment. Lymphocytes were incubated with or without lipo-polysaccharide in the presence or absence of silver nanoparticles for 24 hours in vitro. And IL-6, IL-4, IgG and IgE of cell culture supernatants were analyzed by ELISA. Results and Discussion: SNPs exposure group showed SNPs accumulated time-dose dependently in blood and organs of rats. The IgG (14 days), IgE (14 days) and IL-4 (7 days) of rats after 10 mg/kg SNPs exposure were signifi-cantly increased, and IL-6 and CD45RA+ (B cells) at 14 days post-exposure of SNPs were obviously increased, compared with that in control. But we did not find significant pathological changes. The rise of glucose and ALP suggested damage of pancreas and liver of rats after SNPs oral administra-tion. Low concentration silver in blood increased inflammatory cells in response to the stimuli by blood examination, while high concentration induced cytotoxicity which inhibited the normal growth of lymphocyte. Secretion of IgG and IL-6 induced by LPS of lymphocytes in low-dose and high-dose (0.5 μg/ml, 5 μg/ml) SNPs exposure was inhibited in vitro. In conclusion, our study showed that silver nanoparticles mainly caused a Th2-type immune toxicity-based early systemic toxicity.

文章引用: 邵安良 , 王志杰 , 陈 亮 , 徐丽明 (2014) 纳米银诱导的以免疫毒性为主的早期全身毒性研究。 免疫学研究, 2, 33-47. doi: 10.12677/IS.2014.24006

参考文献

[1] Xu, L., Shi, C., Shao, A., et al. (2014) Toxic responses in rat embryonic cells to silver nanoparticles and released silver ions as analyzed via gene expression profiles and transmission electron microscopy. Nanotoxicology, 1-10.

[2] Xu, L., Shao, A., Zhao, Y., et al. (2014) Neurotoxicity of silver nanoparticles in rat brain after intragastric exposure. Journal of Nanoscience and Nanotechnology, 14, 1-9.

[3] Bouwmeester, H., Poortman, J., Peters, R.J., et al. (2011) Characteri-zation of translocation of silver nanoparticles and effects on whole-genome gene expression using an in vitro intestinal epithelium coculture model. ACS Nano, 5, 4091- 5103.

[4] Shavandi, Z., Ghazanfari, T. and Moghaddam, K.N. (2011) In vitro toxicity of silver nanoparticles on murine peritoneal macrophages. Immunopharmacology Immunotoxicology, 33, 135-140.

[5] Beer, C., Foldbjerg, R., Hayashi, Y., et al. (2012) Toxicity of silver nanoparticles—Nanoparticle or silver ion? Toxicology Letters, 208, 286-292.

[6] Mukherjee, S.G., O’Claonadh, N., Casey, A., et al. (2012) Comparative in vitro cytotoxicity study of silver nanoparticle on two mammalian cell lines. Toxicology in Vitro, 26, 238-251.

[7] El Badawy, A.M., Silva, R.G., Morris, B., et al. (2011) Surface charge-dependent toxicity of silver nanoparticles. En-vironmental Science Technology, 45, 283-287.

[8] Schäfer, B., Tentschert, J. and Luch, A. (2011) Nanosilver in consumer products and human health: More information required! Environmental Science Technology, 45, 7589-7590.

[9] Ahamed, M., Alsalhi, M.S. and Siddiqui, M.K. (2010) Silver nanoparticle applications and human health. Clinica Chimica Acta, 411, 1841-1848.

[10] Johnston, H.J., Hutchison, G., Christensen, F.M., et al. (2011) A review of the in vivo and in vitro toxicity of silver and gold particulates: Particle attributes and biological mechanisms responsible for the observed toxicity. Critical Reviews in Toxicology, 40, 328-346.

[11] Sung, J.H., Ji, J.H., Song, K.S., Lee, J.H., Choi, K.H., Lee, S.H. and Yu, I.J. (2011) Acute inhalation toxicity of silver nanoparticles. Toxicology and Industrial Health, 27, 149-154.

[12] Sung, J.H., Ji, J.H., Park, J.D., Song, M.Y., Song, K.S., Ryu, H.R., et al. (2011) Subchronic inhalation toxicity of gold nanoparticles. Particle and Fibre Toxicology, 8, 1-16.

[13] Stebounova, L.V., Adamcakova-Dodd, A., Kim, J.S., Park, H., O’Shaughnessy, P.T., Grassian, V.H. and Thorne, P.S. (2011) Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Particle and Fibre Toxicology, 8, 1-5.

[14] Korani, M., Rezayat, S.M., Gilani, K., Arbabi Bidgoli, S. and Adeli, S. (2011) Acute and subchronic dermal toxicity of nanosilver in guinea pig. International Journal of Nanomedicine, 6, 855-862.

[15] Kim, Y.S., Song, M.Y., Park, J.D., Song, K.S., Ryu, H.R., Chung, Y.H., et al. (2010) Subchronic oral toxicity of silver nanoparticles. Particle and Fibre Toxicology, 7, 1-20.

[16] Sung, J.H., Ji, J.H., Park, J.D., Yoon, J.U., Kim, D.S., Jeon, K.S., et al. (2009) Subchronic inhalation toxicity of silver nanoparticles. Toxicolology Science, 108, 452-461.

[17] Sung, J.H., Ji, J.H., Yoon, J.U., Kim, D.S., Song, M.Y., Jeong, J., et al. (2008) Lung function changes in Sprague-Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhalation Toxicology, 20, 567-574.

[18] Ji, J.U., Jung, J.H., Kim, S.S., Yoon, J.U., Park, J.D., Choi, B.S., et al. (2007) Twenty-eight-day inhalation toxicity study of silver nanoparticles in Sprague-Dawley rats. Inhalation Toxicology, 19, 857-871.

[19] Tang, J., Xiong, L., Wang, S., Wang, J., Liu, L., Li, J., et al. (2009) Distribution, translocation and accumulation of silver nanoparticles in rats. Journal of Nanoscience and Nanotechnology, 9, 4924-4932.

[20] Fadel, T.R., Look, M., Staffier, P.A., Haller, G.L., Pfefferle, L.D., Fahmy, T.M., et al. (2010) Clustering of stimuli on single-walled carbon nanotube bundles enhances cellular activation. Langmuir, 26, 5645-5654.

[21] Chrastina, A. and Schnitzer, J.E. (2010) Iodine-125 radiolabeling of silver nanoaprticles for in vivo SPECT imaging. International Journal of Nanomedicine, 5, 653-659.

[22] Meng, J., Yang, M., Jia, F., Xu, Z., Kong, H., Xu, H., et al. (2011) Immune responses of BALB/c mice to subcutaneously injected multi-walled carbon nanotubes. Nanotoxicology, 5, 583-591.

[23] Meng, J., Yang, M., Jia, F., Kong, H., Zhang, W., Wang, C., et al. (2010) Subcutaneous injection of water-soluble multi-walled carbon nanotubes in tumor-bearing mice boosts the host immune activity. Nanotechnology, 21, Article ID: 145104.

[24] 刘焕亮, 杨丹凤, 张华山, 杨红莲, 张伟, 刘丽华, 等 (2010) 3种典型纳米材料致大鼠免疫毒性的作用. 解放军预防医学杂志, 3, 163-166.

[25] Park, E.J., Bae, E., Yi, J., Kim, Y., Choi, K., Lee, S.H., et al. (2010) Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticle. Environmental Toxicology and Pharmacology, 30, 162- 168.

[26] Hackenberg, S., Scherzed, A., Kessler, M., Hummel, S., Technau, A., Froelich, K., et al. (2011) Silver nanoparticles: Evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicology Letters, 201, 27-33.

[27] Xu, L.M., Takemura, T., Xu, M.S., Hanagata, N. (2011) Toxicity of silver nanoparticles as assessed by global gene expression analysis. Materials Express, 1, 74-79.

[28] Xu, L., Li, X., Takemura, T., Hanagata, N., Wu, G. and Chou, L.L. (2012) Genotoxicity and molecular response of silver nanoparticle (NP)-based hydrogel. Journal of Nanobiotechnology, 10, 16.

[29] Li, X., Xu, L., Shao, A., Wu, G. and Hanagata, N. (2013) Cytotoxic and genotoxic effects of silver nanoparticles on primary Syrian hamster embryo (SHE) cells. Journal of Nanoscience and Nanotechnology, 13, 161-170.

[30] Park, M.V., Neigh, A.M., Vermeulen, J.P., de la Fonteyne, L.J., Verharen, H.W., Briedé, J.J., et al. (2011) The effect of particle size on the cytotoxicity, inflammation, developmental toxicity and genotoxicity of silver nanoparticles. Biomaterials, 32, 9810-9817.

[31] Carlson, C., Hussain, S.M., Schrand, A.M., Braydich-Stolle, L.K., Hess, K.L., Jones, R.L. and Schlager, J.J. (2008) Unique cellular interaction of silver nanoparticles: Size-dependent generation of reactive oxygen species. The Journal of Physical Chemistry B, 112, 13608-13619.

[32] Liu, W., Wu, Y., Wang, C., Li, H.C., Wang, T., Liao, C.Y., et al. (2010) Impact of silver nanoparticles on human cells: Effect of particle size. Nanotoxicology, 4, 319-330.

[33] De Jong, W.H. and Borm, P.J. (2008) Drug delivery and nanoparticles: Applications and hazards. International Journal of Nanomedicine, 3, 133-149.

[34] Kim, J.H., Kim, C.S., Ignacio, R.M., Kim, D.H., Sajo, M.E., Maeng, E.H., et al. (2014) Immunotoxicity of silicon dioxide nanoparticles with different sizes and electrostatic charge. International Journal of Nanomedicine, 9, 183-193.

[35] Hong, J., Wang, L., Zhao, X., Yu, X., Sheng, L., Xu, B., et al. (2014) Th2 factors may be involved in TiO2 NP-induced hepatic inflammation. Journal of Agricultural and Food Chemistry, 62, 6871-6878.

分享
Top