Magnetic Properties and Electric-Field Modulation Effect in La-Ca-MnO3 Based Magnetoelectric Composite

作者: 张慧钦 , 唐 磊 , 胡冰琳 , 陈水源 , 黄志高 :福建师范大学物理与能源学院,福建省量子调控与新能源材料重点实验室,福建 福州;

关键词: La0.6Ca0.4MnO3压电体复合薄膜结构磁特性电场调制La0.6Ca0.4MnO3 Piezoelectrics Composite Thin Films Magnetic Properties Electric-Field Modulation

采用溶胶-凝胶法及旋涂法制备La0.6Ca0.4MnO3 (简写为LCMO)块材和LCMO/Pb (Zr0.52Ti0.48)O3薄膜。对样品的结构、磁性和磁电效应测量结果分析表明,由于不同的晶格相互作用及磁性原子之间的耦合状态,LCMO块材和薄膜的居里温度有很大差别;此外,通过电场作用在PZT铁电体产生应力进而对LCMO薄膜晶格结构及磁相互作用的影响,获得了LCMO/PZT磁电复合薄膜中电场对LCMO居里温度和磁化强度的有效调制。本工作表明,除了外磁场,还可以通过静电场对材料的磁特性进行调制,从而增加对材料特性调控的自由度,实现器件的多功能特性。

Abstract: Bulk La0.6Ca0.4MnO3 (named as LCMO) and LCMO/Pb (Zr0.52Ti0.48)O3 (PZT) thin film were prepared by sol-gel method and spin coating technology. The crystal structure, magnetic properties and magnetoelectric effect were measured. The experimental results indicate that, due to the change of crystal lattice interaction and the different coupling states between magnetic atoms, the Curie temperatures (Tc) of the two samples are very different. Furthermore, the effective modulation effects of the electric field on Tc, as well as the magnetization of LCMO/PZT composite, were ob-tained by an electric field applied to the ferroelectrics. The investigation shows that, besides magnetic field, the static electric field can also be used to modulate the magnetic properties, which increases the degree of freedom of the manipulation in functional materials, and therefore may realize the multifunctional properties of materials.

文章引用: 张慧钦 , 唐 磊 , 胡冰琳 , 陈水源 , 黄志高 (2015) La-Ca-MnO3基磁电复合材料中的磁特性及其电场调制。 应用物理, 5, 33-38. doi: 10.12677/APP.2015.54005


[1] Eerenstein, W., Wioral, M., Prieto, J.L., et al. (2007) Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nature Materials, 6, 348-351.

[2] Eerenstein, W., Mathur, N.D. and Scott, J.F. (2006) Multiferroic and magnetoelectric materials. Nature, 442, 759-765.

[3] Ma, J., Hu, J.M., Li, Z. and Nan, C.W. (2011) Recent progress in multiferroic magnetoelectric composites: From bulk to thin films. Advanced Materials, 23, 1062-1087.

[4] Zhou, W.P., Li, Q., Xiong, Y.Q., et al. (2014) Electric field manipulation of magnetic and transport properties in SrRuO3/Pb(Mg1/3Nb2/3)O3-PbTiO3 heterostructure. Scientific Reports, 4, 6991-6996.

[5] Wang, Z.G., Zhang, Y., Wang, Y.J., et al. (2014) Magnetoelectric assisted 180o magnetization switching for electric field addressable writing in magnetoresistive random-access memory. ACS Nano, 8, 7793-7800.

[6] 段纯刚 (2009) 磁电效应研究进展. 物理学进展, 29, 215-237.

[7] Coey, J.M.D., Berkowitz, A.E., Balcells, L., et al. (1998) Magnetoresistance of magnetite, Applied Physics Letters, 72, 734-736.

[8] Naftalis, N., Bason, Y., Hoffman, J., et a1., (2009) Anisotropic magnetoresistance and planar Hall effect in epitaxial films of La0.7Ca0.3MnO3. Applied Physics Letters, 106, 023916.

[9] Thiele, C., DÖrr, K., Bilani, O., et a1. (2007) Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3/PMN-PT(001) (A=Sr,Ca). Physical Review B, 75, 054408.

[10] Chen, S.Y., Ye, Q.Y., Wang, D.H., et a1. (2011) Effect of electric field on magneto-transport properties in La2/3(Ca0.6Ba0.4)1/3MnO3/Pb(Zr0.52Ti0.48)O3 laminated composite. Journal of Applied Physics, 109, Article ID: 07D723.

[11] Yang, Y.J., Yang, M.M., Luo, Z.L., et a1. (2012) Large anisotropic remnant magnetization tunability in (011)-La2/3Sr1/3MnO3/0.7Pb(Mg2/3Nb1/3)O3-0.3PbTiO3 multiferroic epitaxial heterostructures. Applied Physics Letters, 100, Article ID: 043506.

[12] Zheng, M., Li, X.Y., Yang, M.M., et a1. (2013) Coupling of magnetic field and lattice strain and its impact on electronic phase separation in La0.335Pr0.335Ca0.33MnO3/ferroelectric crystal heterostructures. Applied Physics Letters, 103, Article ID: 263507.