氧气浓度对肿瘤生长影响的建模及模拟计算
Modeling and Simulation of the Effects of Oxygen Concentration on Tumor Cell Growth

作者: 陈 磊 , 董守斌 :华南理工大学计算机科学与工程学院,广东 广州; 江 毅 :乔治亚州立大学数学与统计系,乔治亚 亚特兰大;

关键词: 氧气浓度肿瘤生长建模模拟计算Oxygen Concentration Tumor Growth Modeling Simulation Calculation

摘要:
恶性肿瘤是危害人类生命健康的严重疾病。恶性肿瘤发生是一个多因素作用、多基因参与、经过多个阶段才最终形成的极其复杂的生物学现象。氧气是影响肿瘤生长最重要的营养物质之一,在这篇文章中,我们提出了一种血管肿瘤生长的建模方法,通过一个固定边界条件的偏微分方程求解无血管肿瘤细胞中氧气浓度的分布,由此定量计算氧气浓度对肿瘤细胞的生长的影响,可以为下一步研究药物对肿瘤细胞的抑制作用打下基础。

Abstract: Malignant tumor is harm to people’s life and health. Tumor is a function, multiple genes involved in multiple factors, multiple stages to eventually become the extremely complex biological phe-nomena. Oxygen is one of the most important nutrients affecting tumor growth, in this article, we propose a fixed boundary conditions of partial differential equation of oxygen concentration dis-tribution in the avascular tumor cells, oxygen concentration can affect the growth of tumor cells, movement, sleep, and death by studying the oxygen concentration of tumor cells in tissue to study the effect of drugs on tumor cell next to lay the foundation.

文章引用: 陈 磊 , 董守斌 , 江 毅 (2015) 氧气浓度对肿瘤生长影响的建模及模拟计算。 生物物理学, 3, 7-17. doi: 10.12677/BIPHY.2015.31002

参考文献

[1] Folkman, J. (1971) Tumour angiogenesis—Therapeutic implications. New England Journal of Medicine, 285, 1182- 1186.

[2] Owen, M.R., Alarcón, T., Maini, P.K. and Byrne, H.M. (2009) Angiogenesis and vascular remodelling in normal and cancerous tissues. Journal of Mathematical Biology, 58, 689-721.

[3] Owen, M., Stamper, I., Muthana, M., Richardson, G., Dobson, J., Lewis, C. and Byrne, H. (2011) Mathematical modeling predicts synergistic antitumor effects of combining a macrophagebased, hypoxia-targeted gene therapy with chemotherapy. Cancer Research, 71, 2826.

[4] Wolfram, S. (1984) Cellular automata as models of complexity. Nature, 311, 419-424.

[5] Wolfram, S. (1994) Cellular automata and complexity: Collected papers. Addison-Wesley, Reading.

[6] Chopard, B. and Droz, M. (1998) Cellular automata modeling of physical systems. Cambridge University Press, Cambridge.

[7] Mei, S.S., Billings, S.A. and Guo, L.Z. (2005) A neighborhood selection method for cellular automata models. International Journal of Bifurcation and Chaos, 15, 383-393.

[8] Wolfram, S. (1983) Statistical mechanics of cellular automata. Reviews of Modern Physics, 5, 601-644.

[9] Perfahl, et al. (2011) Multiscale modelling of vascular tumour growth in 3D: The roles of domain size and boundary conditions. PLoS ONE, 6, e14790.

[10] Perfahl, H., Byrne, H., Chen, T., Estrella, V., Alarcón, T., Lapin, A., Gatenby, R., Gillies, R., Lloyd, M., Maini, P., et al. (2011) Multiscale modelling of vascular tumour growth in 3d: The roles of domain size and boundary conditions. PloS One, 6, e14790.

[11] Alarćon, T., Byrne, H.M. and Maini, P.K. (2004) A mathematical model of the effects of hypoxia on the cell-cycle of normal and cancer cells. Journal of Theoretical Biology, 229, 395-411.

[12] Royds, J.A., Dower, S.K., Qwarnstrom, E.E. and Lewis, C.E. (1998) Response of tumour cells to hypoxia: Role of p53 and nfkb. British Medical Journal, 51, 55.

[13] Figueredo, G.P., Joshi, T.V., Osborne, J.M., Byrne, H.M. and Owen, M.R. (2013) On-lattice agent-based si-mulation of populations of cells within the open-source Chaste framework. Interface Focus, 3, Article ID: 20120081.

分享
Top