有机朗肯循环发电系统多目标优化及变工况下的性能分析
Multi-Objective Optimization of ORC Systems and Performance Analysis under Off-Design Condition

作者: 聂兰胸 , 唐胜利 :重庆大学低品位能源利用技术及系统教育部重点实验室,重庆;

关键词: 有机朗肯循环优化遗传算法回收变工况Organic Rankine Cycle Optimization Genetic Algorithm Recovery Off-Design Condition

摘要:
本文以R245fa为工质的再热型、回热型及基本型有机朗肯循环发电系统为对象,以热效率、火用效率及初投资作为优化变量,以实现系统对中低温热源回收的综合性能最优为目标,构建了优化函数,分析比较了三种系统的综合性能,分析表明,在给定余热条件下,采用回热型有机朗肯循环发电系统更适合。在此基础上,对回热型有机朗肯循环发电系统的变工况特性进行了分析,以输出功率最大为目标运行时,热源温度的改变对系统运行压力的影响相比热源流量的变化更大;输出功率及系统热效率随热源温度及流量增加而增加,热回收效率随热源温度的增加而增加,但却随热源流量的增加而降低,当热源温度及流量分别为423 K、12 kg∙s−1时,系统热回收效率达到最小值4.39%,而当热源温度及流量分别为473 K、6 kg∙s−1时,热回收效率达到最大值7.46%。

Abstract: This paper takes thermal efficiency, energy efficiency and the Initial investment cost as the opti-mization object, compared the comprehensive performance of Organic Ranking Cycle (ORC) with recuperator, reheat Organic Ranking Cycle and Organic Ranking Cycle power generation systems which using R245fa as working fluid. The result suggests that Organic Ranking Cycle with recupe-rator is more suitable for the recovery of the low-temperature heat source on the given parameters. Analyses of characteristics under off-design condition are conducted under this foundation. When the goal is to maximize the output power for the energy recovery system, the heat source’s temperature changes have a significant impact on the system operating pressure; the net power output and the thermal efficiency increased with increasing heat source’s temperature or mass flow rate. However, the heat recovery efficiency with increasing temperature of the heat source increases, but with the increase of heat flow decreases. Its minimum value, 4.39%, is achieved for heat source temperature and mass flow rate equal to 423 K and 12 kg∙s−1, while its maximum value, 7.46%, is achieved for heat source temperature and mass flow rate equal to 473 K and 6 kg∙s−1.

文章引用: 聂兰胸 , 唐胜利 (2015) 有机朗肯循环发电系统多目标优化及变工况下的性能分析。 动力系统与控制, 4, 25-35. doi: 10.12677/DSC.2015.42004

参考文献

[1] 张圣君 (2012) 低温地热发电循环理论优化与有机工质朗肯循环性能实验研究. 天津大学, 天津.

[2] Dai, Y.P., et al. (2009) Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery. Energy Conversion and Management, 50, 576-582.

[3] Wei, D.H., Lu, X.S., Lu, Z., et al. (2007) Perfor-mance analysis and optimization of organic Rankine cycle (ORC) for waste heat recovery. Energy Conversion and Management, 48, 1113-1119.

[4] Schuster, A., Karellas, S. and Aumann, R. (2010) Efficiency optimization potential in supercritical organic Rankine cycle. Energy, 35, 1033-1039.

[5] 汤元强, 宇岳峰 (2012) 低温余热双循环发电系统的设计与优化. 动力工程学报, 32, 487-493.

[6] 王漫, 王江峰, 阎哲泉, 马少林, 戴义平 (2013) 有机工质低温余热发电系统多目标优化设计. 动力工程学报, 33, 387-392.

[7] Sekulic, D.P. and Saha, R.K. (2003) Fundamentals of heat exchanger design. John Wiley & Sons Inc., New York.

[8] Calise, F., et al. (2013) Design and parametric optimization of an organic Rankine cycle powered by solar energy. American Journal of Engineering and Applied Sciences, 6, 178-204.

[9] Wang, H. and Touber, S. (1991) Distributed and non-steady-state modeling of an air cooler. International Journal of Refrigeration, 14, 4-25.

[10] 夏清, 陈常贵 (2007) 化工原理. 天津大学出版社, 天津, 1.

[11] Nusselt, W. (1916) The condensation of steam on cold surface. Zeitschrift Des Vereines Deutscher Ingenieure, 60, 541-546.

[12] Dittus, F.W. and Boelter, L.M.K. (1985) Heat transfer in automobile radiators of tubular type. International Communications in Heat and Mass Transfer, 12, 3-22.

[13] Calise, F., Capuozzo, C., Carotenito, A. and Vanoli, L. (2014) Thermodynamic analysis and off-design performance of an organic Rankine cycle power by me-dium-temperature heat sources. Solar Energy, 103, 595-609.

[14] Gabbrielli, R. (2012) A novel design approach for small scale low enthalpy binary geothermal power plants. Energy Conversion and Management, 64, 263-272.

[15] Turton, R., Bailie, R.C., Whiting, W.B., et al. (2009) Analysis, synthesis and design of chemical processes. 3rd Edition, Premtice Hall Inc., America.

[16] Deb, K. (2001) Multi-objective optimization using evolutionary algorithms. John Wiley & Sons Ltd., UK.

[17] 王晓鹏 (2003) 多目标优化设计中的Pareto遗传算法. 系统工程及电子技术, 25, 1558-1561.

分享
Top