层厚度和晶界“阶梯型”缺陷对铜–镍复合薄膜的力学性能的分子动力学模拟研究
The Effect of Layer Thickness and Interfacial Defect with Steps on Mechanical Properties of Cu/Ni Multilayers Thin Film

作者: 杨 萌 , 徐建刚 , 张云光 :西安邮电大学理学院,陕西 西安;

关键词: 分子动力学模拟铜–镍复合纳米薄膜力学性能Molecular Dynamics Cu/Ni Multilayers Thin Film Mechanical Property

摘要:
本文采用分子动力学方法研究了层厚度和“阶梯型”晶界缺陷对铜–镍纳米薄膜的力学性能的影响。模拟结果表明,随着层厚度的增加,薄膜的应力逐渐增大,这是因为材料的层厚度越大,材料存储位错的能力就越强,及屈服强度越高。除此之外,研究结果发现晶界存在“阶梯型”缺陷降低了晶界对于位错传播的阻碍作用,使得铜–镍纳米薄膜屈服强度降低。

Abstract: The effect of layer thickness and interfacial defect with steps of copper-nickel multilayer thin film on deformation mechanism is investigated by molecular dynamics simulations. The results indicate the yield stress is found to increase with increasing layer thickness. The result is mainly due to the fact that the room for dislocation storage can be affected by the changes of layer thickness. Furthermore, the studies show that interfacial defect with steps dominates interfacial barrier effect, resulting in the lowest yield stress.

文章引用: 杨 萌 , 徐建刚 , 张云光 (2015) 层厚度和晶界“阶梯型”缺陷对铜–镍复合薄膜的力学性能的分子动力学模拟研究。 应用物理, 5, 25-32. doi: 10.12677/APP.2015.53004

参考文献

[1] Abdolrahim, N., Zbib, H.M. and Bahr, D.F. (2014) Multiscale modeling and simulation of deformation in nanoscale metallic multilayer systems. International Journal of Plasticity, 52, 33-50.

[2] Yuan, F. and Wu, X. (2012) Layer thickness dependent tensile deformation mechanisms in sub-10nm multilayer nanowires. Journal of Applied Physics, 111, Article ID: 124313.

[3] 王涛, 卢子兴, 杨振宇 (2011) Cu/Ni 多层纳米线力学性能尺寸效应的分子动力学模拟. 计算力学学报, B04, 147-151.

[4] Chen, S.D., Zhou, Y.K. and Soh, A.K. (2012) Orientation and rate dependence of wave propagation in shocked beta-SiC from atomistic simulations. Computational Materials Science, 61, 239-242.

[5] Wang, F.Y., Liu, Y.H., Yin, X., et al. (2010) The interface and surface effects of the bicrystal nanowires on their mechanical behaviors under uniaxial stretching. Journal of Applied Physics, 108, Article ID: 074311.

[6] Song, H.Y. and Li, Y.L. (2012) Effect of stacking fault and temperature on deformation behaviors of nanocrystalline Mg. Physics Letters A, 376, 529-533.

[7] An, M.R. and Song, H.Y. and Su, J.F. (2012) Atomic simulations of influence of twinning on crack propagation of Al. Chinese Physics B, 21, Article ID: 106202.

[8] Brinkmann, A., Langer, F., Scholler, F., et al. (2011) Molecular dynamics simulation of interfaces and surfaces in structures derived froma-quartz- and ZSM-5 crystallites. Physica B: Condensed Matter, 406, 293.

[9] Song, H.Y., Li, Y.L. and An, M.R. (2014) Atomic simulations of the effect of twist grain boundaries on deformation behavior of nanocrystalline copper. Computational Materials Science, 84, 40-44.

[10] Cheng, K.Y., Tieu, K., Lu, C., et al. (2014) Molecular dynamics simulation of the grain boundary sliding behaviour for AlR5(210). Computational Materials Science, 81, 52-57.

[11] Cao, A.J., Wei, Y.G. and Ma, E. (2008) Grain boundary effects on plastic deformation and fracture mechanisms in Cu nanowires: Molecular dynamics simulations. Physical Review B, 77, Article ID: 195429.

[12] Xie, Y.P. and Zhao, S.J. (2012) First principles study of Al and Ni segregation to the α-Fe/Cu (100) coherent interface and their effects on the interfacial cohesion. Computational Materials Science, 63, 329-335.

[13] Zhang, R.F., Germann, T.C., Wang, J., Liu, X.Y. and Beyerlein, I.J. (2014) Role of interface structure on the plastic response of Cu/Nb nanolaminates under shock compression: Non-equilibrium molecular dynamics simulations. Computational Materials Science, 86, 118.

[14] Ma, F., Zhang, J.M. and Xu, K.W. (2013) Theoretical analysis of interface energy for unrelaxed Ag(001)/Ni(001) twist interface boundaries with MAEAM. Acta Materialia, 61, 7488.

[15] Zbib, H.M., Overman, C.T., Akasheh, F. and Bahr, D. (2010) Analysis of plastic deformation in nanoscale metallic multilayers with coherent and incoherent interfaces. Mechanics Research Communications, 37, 315.

[16] Abdolrahim, N., Mastorakos, I.N., Shao, S., Bahr, D.F. and Zbib, H.M. (2014) The effect of interfacial imperfections on plastic deformation in nanoscale metallic multilayer composites. Computational Materials Science, 86, 118-123.

[17] Hoagland, R.G., Kurtz, R.J. and Henager, C.H. (2004) Slip resistance of interfaces and the strength of metallic multilayer composites. Scripta Materialia, 50, 775-779.

[18] Shao, S., Zbib, H.M., Mastorakos, I.N. and Bahr, D.F. (2014) The void nucleation strengths of the Cu-Ni-Nb-based nanoscale metallic multilayers under high strain rate tensile loadings. Computational Materials Science, 82, 435-441.

[19] Zhou, X.W., Wadley, H.N.G., Johnson, R.A., Larson, D.J., Tabat, N., Cerezo, A., et al. (2001) Atomic scale structure of sputtered metal multilayers. Acta Materialia, 49, 4005-4015.

[20] Hockney, R.W. (1970) The potential calculation and some applications. Methods in Computational Physics, 9, 136.

[21] Stukowski, A. (2010) Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool. Modelling and Simulation in Materials Science and Engineering, 18, Article ID: 015012.

[22] Faken, D. and Jonsson, H. (1994) Systematic analysis of local atomic structure combined with 3D computer graphics. Computational Materials Science, 2, 279-286.

[23] 程东, 严志军, 严立 (2006) Cu/Ni多层膜中交变应力场对可动位错的制约. 金属学报, 2, 118-122.

[24] 程东, 严志军, 严立 (2008) Cu/Ni多层膜强化机理的分子动力学模拟. 金属学报, 12, 1461-1464.

分享
Top