静息态下基于格兰杰因果分析的ACT-R网络有效连接变化研究
Change of Effective Connective of the ACT-R Network in the Resting State Based on Granger Causality Analysis

作者: 李 川 , 周海燕 , 周 军 , 熊玉琨 , 秦裕林 , 钟 宁 :北京工业大学,国际WIC研究院,北京;

关键词: 格兰杰因果分析静息态ACT-R脑网络有效连接Granger Causality Analysis Resting States ACT-R Model Network Effective Connectivity

摘要:
近年来,脑功能网络的组织促进了人类大脑的理解。为进一步探究人类大脑功能网络的变化,本研究主要使用有效连接方法对比任务前、后静息态fMRI数据变化。区别于以往大脑整体网络的改变,研究使用基于格兰杰因果分析(GCA)的有效连接方法针对ACT-R脑网络内部开展。结果表明:短暂认知任务前后,ACT-R网络模型内部有效连接发生较大改变;在后静息态,程序性模块(Cad)作为一个主要信息接收点接收来自其他模块的因果影响。

Abstract: Recently, the organization of functional network promotes the understanding of the human brain. To further explore the functional reorganization affected by a short-time cognitive performance in human brain, we used the method of Granger causality analysis (GCA) to compare two resting fMRI data before and after a problem solving task. Distinguished from the view of the brain network as a whole in previous studies, GCA focused on the internal organization within a brain network. The re-sults showed that taking the ACT-R network as an example, the effective connectivity within the ACT-R network significantly changed after the brief cognitive task. In the post-resting state, proce-dural module (Cad) acted as a main information receiver received influence from other modules.

文章引用: 李 川 , 周海燕 , 周 军 , 熊玉琨 , 秦裕林 , 钟 宁 (2015) 静息态下基于格兰杰因果分析的ACT-R网络有效连接变化研究。 心理学进展, 5, 173-179. doi: 10.12677/AP.2015.53024

参考文献

[1] 左西年, 张喆, 贺永, 等(2013). 人脑功能连接组: 方法学, 发展轨线和行为关联. 科学通报, 35期, 3399-3413.

[2] Anderson, J. R. (1996). ACT: A simple theory of complex cognition. American Psychologist, 51, 355-365.

[3] Anderson, J. R., & Matessa, M. (1998). The rational analysis of categorization and the ACT-R architecture. Rational models of cognition, ed. M. Oaksford & N. Chater, 197-217.

[4] Anderson, J. R., & Schunn, C. D. (2000). Im-plications of the ACT-R learning theory: No magic bullets. In R. Glaser, (Ed.), Advances in Instructional Psychology, Educational Design and Cognitive Science (pp. 1-33). Mahwah, NJ: Lawrence Erlbaum Associates.

[5] Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004). An integrated theory of the mind. Psychological Review, 111, 1036-1060.

[6] Anderson, J. R., Fincham, J. M., Qin, Y., & Stocco, A. (2008). A central circuit of the mind. Trends in Cognitive Sciences, 12, 136-143.

[7] Deshpande, G., LaConte, S., James, G. A., Peltier, S., & Hu, X. (2009). Multivariate Granger causality analysis of fMRI data. Human Brain Mapping, 30, 1361-1373.

[8] Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping, 2, 56-78.

[9] Geweke, J. (1982). Measurement of linear dependence and feedback between multiple time series. Journal of the American Statistical Association, 77, 304-313.

[10] Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37, 424-438.

[11] Lebiere, C., & Anderson, J. R. (2008). A connectionist im-plementation of the ACT-R production system. Carnegie Mellon University, 635-640.

[12] Qin, Y., Bothell, D., & An-derson, J. R. (2007). ACT-R meets fMRI. In Web Intelligence Meets Brain Informatics (pp. 205-222). Berlin: Sprin-ger.

[13] Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52, 1059-1069.

[14] Sohn, M. H., Ursu, S., Anderson, J. R., Stenger, V. A., & Carter, C. S. (2000). The role of prefrontal cortex and posterior parietal cortex in task switching. Proceedings of the National Academy of Sciences of the United States of America, 97, 13448-13453.

[15] Stewart, T. C., & West, R. L. (2007). Cognitive redeployment in ACT-R: Salience, vision, and memory. In 8th International Conference on Cognitive Modelling, Ann Arbor, 26-29 July 2007, 313-318.

[16] Wang, Z., Liu, J., Zhong, N., Qin, Y., Zhou, H., & Li, K. (2012). Changes in the brain intrinsic organization in both on-task state and post-task resting state. Neuroimage, 62, 394-407.

[17] Zang, Z. X., Yan, C. G., Dong, Z. Y., Huang, J., & Zang, Y. F. (2012). Granger causality analysis implementation on MATLAB: A graphic user interface toolkit for fMRI data processing. Journal of Neuroscience Methods, 203, 418-426.

[18] Zhang, H., Long, Z., Ge, R., Xu, L., Jin, Z., Yao, L., & Liu, Y. (2014). Motor Imagery Learning Modulates Functional Connectivity of Multiple Brain Systems in Resting State. PloS One, 9, e85489.

分享
Top