基于BP神经网络算法的孤岛微网控制策略研究
Research on Control Strategy for Islanded Microgrid Based on BP Neural Network Algorithm

作者: 余丰亮 , 肖宏飞 :杭州电子科技大学自动化研究所,浙江 杭州; 戴 鑫 :浙江宇视科技有限公司,浙江 杭州;

关键词: 微网孤岛运行U/f控制BP神经网络PID控制Microgrid Island Operation U/f Control BP Neural Network PID Control

摘要:
微网在孤岛运行时,须依靠自身的调节能力来维持电压和频率的稳定。本文针对微网孤岛运行中采用的U/f控制方法的不足,提出了一种基于BP神经网络算法的电压电流双闭环控制策略,设计了可自适应调整参数的PID控制器。采用具有自学习能力的BP神经网络算法,在线调整U/f控制中电压电流双闭环控制器的参数,减小微网孤岛运行时由分布式电源输出和负荷波动引起的电压及频率波动。仿真研究表明,基于BP神经网络算法的电压电流双闭环PID控制器具有良好的适应性和抗干扰性,有利于孤岛微网的稳定运行。

Abstract: When microgrid operates in islanded mode, it must maintain voltage and frequency by its own regulating ability. To overcome shortcomings of U/f control for microgrid in island operation, an improved voltage and current double-loop controller with a proportional-integral-derivative (PID) structure is proposed in this paper. The PID parameters are adaptively adjusted using BP neural network earning algorithm. The PID control with adaptive adjusted parameters contributes to reducing variations of voltage and frequency in isolation due to the fluctuation of DGs and loads. The simulation demonstrates that the PID controller based on BP neural network with voltage and current double-loop has good adaptability and anti-disturbance, which help to maintain stable operation of microgrid.

文章引用: 余丰亮 , 肖宏飞 , 戴 鑫 (2015) 基于BP神经网络算法的孤岛微网控制策略研究。 电气工程, 3, 8-15. doi: 10.12677/JEE.2015.31002

参考文献

[1] Bezerra, B., Mocarquer, S., Barroso, L., et al. (2012) Expansion pressure: Energy challenges in Brazil and Chile. IEEE Power and Energy Magazine, 10, 48-58.

[2] Rashad, M.K. and Aymen, C. (2013) Three control strategies to improve the microgrid transient dynamic response during isolated mode: A comparative study. IEEE Transactions on Industrial Electronics, 60, 1314-1322.

[3] 肖宏飞, 刘士荣, 郑凌蔚, 等 (2009) 微型电网技术研究初探. 电力系统保护与控制, 8, 114-119.

[4] 张纯, 陈民铀, 王振存 (2011) 微网运行模式平滑切换的控制策略研究略. 电力系统保护与控制, 20, 1-5.

[5] Mohammad, B.S., Robert, S.B. and Abu-Rub, H. (2014) Model predictive control of PV sources in a smart DC distribution system: Maximum power point tracking and droop control. IEEE Transactions on Energy Conversion, 29, 913- 921.

[6] 郑永伟, 陈民铀, 李闯, 等 (2013) 自适应调节下垂系数的微电网控制策略. 电力系统自动化, 7, 5-11.

[7] Lasseter, R.H. (2011) Smart distribution: Coupled microgrids. Proceedings of the IEEE, 99, 1074-1082.

[8] 杨志淳, 刘开培, 乐健, 等 (2012) 孤岛运行微电网中模糊PID下垂控制器设计. 电力系统自动化, 12, 19-23.

[9] Ali, B., Ali, D., Frank, L.L., et al. (2014) Distributed adaptive voltage control of inverter-based microgrids. IEEE Transactions on Energy Conversion, 29, 862-872.

[10] 邵明燕, 刘瑞叶, 吕殿君 (2013) 微网孤立运行时的调频策略研究. 电力系统保护与控制, 5, 60-65.

[11] 徐诚, 刘念, 赵泓, 等 (2013) 基于电力系统二次调频原理的微电源频率控制策略. 电力系统保护与控制, 3, 14- 20.

[12] 张明锐, 刘金辉, 金鑫 (2012) 应用于智能微网的SVPWM固态变压器研究. 电工技术学报, 1, 90-97.

[13] 李福东, 吴敏 (2011) 微网孤岛模式下负荷分配的改进控制策略. 中国电机工程学报, 13, 18-25.

[14] 陈杰, 陈新, 冯志阳, 等 (2014) 微网系统并网/孤岛运行模式无缝切换控制策略. 中国电机工程学报, 19, 3089- 3097.

[15] 王成山, 肖朝霞, 王守相 (2009) 微网中分布式电源逆变器的多环反馈控制策略. 电工技术学报, 2, 100-107.

[16] 刘金琨 (2011) 先进PID控制MATLAB仿真. 第3版, 电子工业出版社, 北京.

[17] 王成山, 高菲, 李鹏, 等 (2012) 低压微网控制策略研究. 中国电机工程学报, 25, 2-8.

分享
Top