量子隐身技术
Quantum Stealth Technology

作者: 邵开元 , 舒 浪 , 刘 明 , 胡文祥 :北京神剑天军医学科学院,北京; 王 乔 , 田崎峰 :武汉工程大学化工与制药学院,湖北 武汉;

关键词: 量子隐形超材料左手材料负折射率隐身斗篷Quantum Stealth Metamaterial Left-Handed Materials Negative Refractive Index Invisible Cloak

摘要:
隐身技术,原本是科幻的产物,但雷达等电磁波的隐身技术,已经在现实中得到了广泛的应用。随着超材料的发现,量子技术和纳米技术以及计算机模拟设计技术的进展,隐身技术获得了快速的发展,可见光的隐身技术也渐渐地“浮出水面”,“隐身斗篷”正在从科幻走向现实。本文从超材料特别是左手材料的理论研究情况入手,全面综述了当前量子隐身材料的发展情况及其发展前景。

Abstract: Stealth technology is originally the product of science fiction, but the electromagnetic radar stealth technology has been widely applied in reality. With the progress of the discovery of metamaterials, quantum and nanotechnology, as well as computer simulation design technology, stealth technology has gained rapid development. Visible stealth technology gradually “surfaces”, and “invisible cloak” is moving from science fiction to reality. From the theoretical study of metamaterials particularly the case of left-handed materials, a comprehensive overview of the current situation and development prospects of quantum stealth materials were presented here.

文章引用: 邵开元 , 舒 浪 , 王 乔 , 刘 明 , 田崎峰 , 胡文祥 (2015) 量子隐身技术。 有机化学研究, 3, 66-76. doi: 10.12677/JOCR.2015.31010

参考文献

[1] Gayle, D. (2012) The camouflage fabric “that can make soldiers INVISIBLE”: Company claims it has pentagon backing for miracle material. Daily Mail, 10 December.

[2] 朱蕾 (2012) 加拿大研发隐形衣. 城市信报, 12月12日.

[3] Lin, H.Y., Zhu, H., Guo, F. and Yu, L.F. (2008) Microwave-absorbing proper of Co-filled carbon nanotubes. Materials Research Bulletin, 43, 2697-2702.

[4] Wang, M., Duan, Y.P., Liu, S.H., Li, X.G. and Ji, Z.J. (2009) Ab-sorption properties of carbonyl-iron/carbon black double-layer microwave absorbers. Journal of Magnetism and Mag-netic Materials, 321, 3442-3446.

[5] Cui, T.J., Smith, D.R. and Liu, R.P. (2009) Metamaterials: Theory, design, and applications. Springer-Verlag New York Inc., New York.

[6] 周济 (2004) 超材料(metamaterials): 设计思想、材料体系与应用. 功能材料, Sup., 125-128.

[7] Veselago, V.G. (1968) The electrodynamics of substances with simul-taneously negative values of ε and μ. Soviet Physics Uspekhi, 4, 509

[8] Pendry, J.B., Holden, A.J., Stewart, W.J. and Youngs, L. (1996) Extremely low frequency plasmons is metallic mesostructures. Physical Review Letters, 76, 4773-4776.

[9] Pendry, J.B., Holden, A.J., Robbins, D.J. and Stewart, W.J. (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Transactions on Microwave Theory and Techniques, 47, 2075-2084.

[10] Shelby, R.A., Smith, D.R. and Schultz, S. (2001) Experimental verification of a negative index of refraction. Science, 292, 77-796.

[11] Parzzoli, C.G., Greegor, R.B., Li, K., Koltenbah, B.E.C. and Tanielian, M. (2003) Experimental verification and simulation of negative index of refraction using Snell’s law. Physical Review Letters, 90, Article ID: 107401.

[12] Eleftheriades, G.V., Iyer, A.K. and Kremer, P.C. (2002) Planar negative refractive index media using periodically L-C loaded transmission lines. IEEE Transactions on Microwave Theory and Techniques, 50, 2702-2712.

[13] Schurig, D., Mock, J.J., Justice, B.J., Cummer, S.A., Pendry, J.B., Starr, A.F. and Smith, D.R. (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science, 314, 977-980.

[14] Nemirovsky, J., Rechtsman, M.C. and Segev, M. (2012) Negative radiation pressure and negative effective refractive index via dielectric birefringence. Optics Express, 20, 8907-8914.

[15] Zou, Y.H., Tassin, P., Koschny, T. and Soukoulis, C.M. (2012) Interaction between graphene and meta-materials: Split rings vs. wire pairs. Optics Express, 20, 12198-12204.

[16] Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H. and Zeilinger, A. (1997) Experimental quantum teleportation. Nature, 390, 575-579.

[17] Boschi, D., Branca, S., De Martini, F., Hardy, L. and Popescu, S. (1998) Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters, 80, 1121-1125.

[18] Pendry, J.B., Schurig, D. and Smith, D.R. (2006) Controlling electromagnetic fields. Science, 312, 1780-1782.

[19] 毕科, 周济, 赵宏杰, 李勃 (2013) 基于铁磁共振的超材料研究进展. 科学通报, 19, 1785-1795.

[20] Eleftheriades, G.V., Iyer, A.K. and Kremer, P.C. (2002) Planar negative refractive index media using periodically L-C loaded transmission lines. Optical Society of America, 12, 2702-2712.

[21] Tretyakov, S., Nefedow, I., Sihvola, A., Maslovski, S. and Simovski, C. (2003) Waves and energy in chiral nihility. Journal of Electromagnetic Waves and Applications, 17, 695-706.

[22] 董建峰, 徐超, 徐键 (2009) 手征负折射研究进展. 量子电子学报, 4, 385-393.

[23] Pendry, J.B. (2004) A chiral route to negative refraction. Science, 306, 1353-1367.

[24] Linden, S., Enkrich, C., Wegener, M., Zhou, J., Koschny, T. and Soukoulis, C.M. (2004) Magnetic response of metamaterials at 100 terahertz. Science, 306, 1351-1353.

[25] Dolling, G., Wegener, M., Soukoulis, C.M. and Linden, S. (2007) Negative-index metamaterial at 780 nm wavelength. Optics Letters, 32, 53-55.

[26] Liu, N., Guo, H.C., Fu, L.W., Kaiser, S., Schweizer, H. and Giessen, H. (2008) Three-dimensional photonic metamaterials at optical frequencies. Nature Materials, 7, 31-37.

[27] Valentine, J., Zhang, S., Zentgraf, T., Ulin-Avila, E., Genov, D.A., Bartal, G. and Zhang, X. (2008) Three-dimensional optical metamaterial with a negative refractive index. Nature, 455, 376-379.

[28] Liu, H., Zhao, X.P., Yang, Y., Li, Q.W. and Lv, J. (2008) Fabrication of infrared left-handed metamaterials via double template-assisted electrochemical deposition. Advanced Materials, 20, 2050-2054.

[29] Baev, A., et al. (2007) Quantum chemical molecular analysis and design used to predict and optimize chiral parameter . Optics Express, 15, 5730-5741.

[30] Dolling, G., et al. (2006) Lighting the way to technology through innovation. Optics Express, 14, 1842.

分享
Top