氧应激与心肌肥厚
Oxygen Stress and Cardiomyocytes Hypertrophy

作者: 周伟民 , 叶振坤 :郑州大学基础医学院生理教研室,河南 郑州;

关键词: 反应氧簇心肌肥厚Reactive Oxygen Species Myocardial Hypertrophy

摘要:
在运动等生理性刺激或甲亢、高血压等病理性刺激会诱发心肌发生生理性或病理性心肌肥厚,研究证实众多细胞氧化还原失衡和/或线粒体功能紊乱是心肌肥厚过程发生和/或发展的重要机制之一。本文系统、深入地综述了心脏反应氧簇的产生和其作用于相应的靶向蛋白的信号分子及其调控机制。

Abstract: Redundancy redox molecular and mitochondrial dysfunction are one of the important mechanisms of physiological or pathological cardiac hypertrophy induced by exercise or hyperthyroidism, hyper- tension and other pathological stimulation, so we review reaction oxygen species generation and its role in the corresponding target signal molecule protein and its regulation mechanism in heart.

文章引用: 周伟民 , 叶振坤 (2015) 氧应激与心肌肥厚。 生理学研究, 3, 1-8. doi: 10.12677/JPS.2015.31001

参考文献

[1] Davies, K.J., Quintanilha, A.T., Brooks, G.A., et al. (1982) Free radicals and tissue damage produced by exercise. Bi-ochemical and Biophysical Research Communications, 107, 1198-1205.

[2] 陈兰英 (1999) 高血压心肌肥厚机制的研究进展. 心血管医学专业论坛, 5, 12-14.

[3] Santos, X.C., Anrayana, N, Zhang, M, et al. (2011) Redox sig-naling in cardiac myocytes. Free Radical Biology & Medicine, 50, 777-793.

[4] Madamanchi, N.R. and Runge, M.S. (2013) Redox signaling in cardiovascular health and disease. Free Radical Biology & Medicine, 61, 473-501.

[5] 席翼, 王国军, 文立等 (2007) 5000 米跑耐力训练对新兵有氧耐力及左心室结构和功能的影响. 中国运动医学杂志, 1, 39-44.

[6] Maron, B.J. and Pelliccia, A. (2006) The heart of trained athletes: cardiac remodeling and the risks of sports, including sudden death. Circulation, 114, 1633-1644.

[7] Williams, L.T., Lefkowitz, R.J., Watanabe, A.M., et al. (1977) Besch HR Jr Thyroid hormone regulation of betaadrenergic receptor number. The Journal of Biological Chemistry, 252, 2787-2789.

[8] Morgan, H.E. and Baker, K.M. (1991) Cardiac hypertrophy. Mechanical, neural, and endocrine dependence. Circulation, 83, 13-25.

[9] Sanford, C.F., Griffin, E.E. and Wildenthal, K. (1978) Synthesis and degradation of myocardial protein during the development and regression of thyroxine-induced cardiac hypertrophy in rats. Circulation Research, 43, 688-694.

[10] Liang F, Webb P, Marimuthu A, et al. (2003) Triiodothyronine increases brain natriuretic peptide (BNP) gene transcription and amplifies endothelin-dependent BNP gene transcription and hypertrophy in neonatal rat ventricular myo-cytes. The Journal of Biological Chemistry, 278, 15073-15083.

[11] Basset, A., Blanc, J., Messas, E., Hagège, A. and Elghozi, J.L. (2001) Renin-angiotensin system contribution to cardiac hypertrophy in experimental hyperthyroidism: An echocardiographic study. Journal of Cardiovascular Pharmacology, 37, 163-172.

[12] Hu, L.W., Benvenuti, L.A., Liberti, E.A., Carneiro-Ramos, M.S. and Barreto-Chaves, M.L. (2003) Thyroxine-induced cardiac hypertrophy: Influence of adrenergic nervous system versus rennin-angiotensin system on myocyte remodeling. American Journal of Physiology, 285, R1473-R1480.

[13] 赵敬国, 王福文 (2001) 力竭性运动后不同时相大鼠心肌形态结构的改变观察. 中国运动医学杂志, 3, 316-317.

[14] 黄超, 洪李锋, 肖学军, 胡良焱, 范莹, 邹军 (2010) 甲状腺素致心肌细胞肥大的机制探讨. 武汉大学学报, 6, 759-762.

[15] 晏浩, 李文林, 徐建军 (2010) 甲状腺素与心肌重构研究进展. 中国老年学杂志, 30, 3016-3018.

[16] 王笑, 刘志华 (2011) 甲状腺功能亢进并发心血管疾病的研究进展. 心血管病学进展, 3, 445-447.

[17] 顾伟梁, 陈长勋 (2007) 甲状腺素引起心肌肥厚的作用机制及中药对其的干预. 时珍国医国药, 7, 1560-1562.

[18] Dillmann, W. (2010) Cardiac hypertrophy and thyroid hormone signaling. Heart Failure Reviews, 15, 125-132.

[19] Wakatsuki, T., Schlessinger, J. and Elson, E.L. (2004) The biochemical response of the heart to hypertension and exercise. Trends in Biochemical Sciences, 29, 609-617.

[20] Kinugawa, K., Younekura, K., Ribeiro, R.C., Eto, Y., Aoyagi, T., Baxter, J.D., et al. (2001) Regulation of thyroid hormone receptor isoforms in physiological and pathological cardiac hypertrophy. Circulation Research, 89, 591-598.

[21] Wang, B., Ouyang, J. and Xia, Z.Y. (2006) Effects of triiodo-thyronine on angiotensin-induced cardiomyocyte hypertrophy: Reversal of increased β-myosin heavy chain gene expression. Canadian Journal of Physiology and Pharmacology, 84, 935-941.

[22] 吴向起 (2013) 基因与药物抑制 Rheb1/mTORC1/S6k 信号通路对小鼠病理性心室重构具有保护作用. 博士学位论文, 南京医科大学, 南京.

[23] 叶勇 (2012) 芪苈强心胶囊对改善压力超负荷引起的小鼠心肌肥厚的相关机制研究. 硕士学位论文, 复旦大学, 上海.

[24] Cohn, J.N., Ferrari, R. and Sharpe, N. (2000) Cardiac remodeling—Concepts and clinical implications: A consensus paper from an international forum on cardiac remodeling. Behalf of an international forum on cardiac remodeling. Journal of the American College of Cardiology, 35, 569-582.

[25] 马继政 (2007) 运动诱发心肌病猝死机制的初步研究. 博士学位论文, 南京医科大学, 南京.

[26] 马继政, 季鹏 (2010) 肥厚型心肌病与运动员心脏. 体育科技, 1, 78-80.

[27] 廖静雯, 曾凡星, 李奕, 吴迎 (2013) 长期不同强度运动诱导p70S6K 和4EBP1 对心肌肥大的作用. 北京体育大学学报, 12, 62-67.

[28] 席翼, 王国军, 文立, 张勇, 张秀丽, 宫成强, 等 (2007) 5000 米跑耐力训练对新兵有氧耐力及左心室结构和功能的影响. 中国运动医学杂志, 1, 39-44.

[29] Maron, B.J. and Pelliccia, A. (2006) The heart of trained athletes: Cardiac remodeling and the risks of sports, including sudden death. Circulation, 114, 1633-1644.

[30] Zou, Y., Song, L., Wang, Z., Ma, A., Liu, T., Gu, H., et al. (2004) Prevalence of idiopathic hypertrophic cardiomyopathy in China: A population-based echocardiographic analysis of adults. American Journal of Medicine, 116, 14-18.

[31] 程宇宁, 张善纲, 吴赛珠 (2006) 运动疗法对高血压患者心室重建及心功能的影响. 心血管康复医学杂志, 3, 211-213.

[32] 刘涛, 张敏, 徐栋, 刘树森, 吉力立, 张勇 (2011) 运动促进慢性心衰大鼠心肌线粒体生物合成与心肌重构. 中国运动医学杂志, 3, 250-256.

[33] 张勇, 李静先, 陈家琦 (1994) 运动性疲劳状态下线粒体膜生物学特征的研究I:力竭运动后大鼠心肌和骨骼肌线粒体膜脂质过氧化变化. 体育科学, 4, 67-70.

[34] 张勇, 李静先, 陈家琦, 等 (1996) 运动性疲劳状态下线粒体膜生物学特征的研究Ⅱ:大鼠心肌和骨骼肌线粒体内膜流动性改变对内膜ATP酶活性的影响. 中国运动医学杂志, 2, 110-113.

[35] 吕梅, 张勇, 李静先, 等 (1998) 运动性疲劳状态下线粒体膜生物学特征的研究 Ⅲ:递增负荷力竭性运动后大鼠肝线粒体膜 NADH-CoQ还原酶及肝组织NAD+的变化. 中国运动医学杂志, 1, 10-11.

[36] Maillet, M., van Berlo, J.H. and Molkentin, J.D. (2013) Molecular basis of physiological heart growth: Fundamental concepts and new players. Nature Reviews. Molecular Cell Biology, 14, 38-48.

[37] 赵克然, 杨毅军, 曹道俊 (2000) 氧自由基与临床. 第一版, 中国医药科技出版社, 北京, 1-56.

[38] 赵世民, 傅善杰, 张庆文 (1993) 医学自由基基础与临床. 第一版, 山东大学出版社, 济南, 1-196.

[39] Karakas, M., Koenig, W., Zierer, A., Herder, C., Rottbauer, W., Baumert, J., et al. (2012) Myeloperoxidase is associated with incident coronary heart disease in dependently of traditional risk factors: Results from the MONICA/KORA Augsburg study. Journal of Internal Medicine, 271, 43-50.

[40] Madamanchi, N.R. and Runge, M.S. (2013) Redox signaling in cardiovascular health and disease. Free Radical Biology and Medicine, 61, 473-501.

[41] Burgoyne, J.R., Mongue-Din, H., Eaton, P. and Shah, A.M. (2012) Redox signaling in cardiac physiology and pathology. Circulation Research, 111, 1091-1106.

[42] Shao, D., Oka, S., Brady, C.D., Haendeler, J., Eaton, P. and Sadoshima, J. (2012) Redox modification of cell signaling in the cardiovascular system. Journal of Molecular and Cellular Cardiology, 52, 550-558.

[43] Davies, K.J., Quintanilha, A.T., Brooks, G.A. and Packer, L. (1982) Free radicals and tissue damage produced by exercise. Biochemical and Biophysical Research Communications, 107, 1198-1205.

[44] Somani, S.M., Frank, S. and Rybak, L.P. (1995) Responses of antioxidant system to acute and trained exercise in rat heart subcellular fractions. Pharmacology Biochemistry and Behavior, 51, 627-634.

[45] 何守泰 (2009) 运动训练对大鼠心肌线粒体的影响. 华章教学探索, 12, 156-158.

[46] 肖霞, 王公法, 王群 (2009) 过度训练对大鼠心肌线粒体MAD, SOD, GSH-Px, PLA2及Ca2+浓度的影响. 海南大学学报: 自然科学版, 1, 34-37.

[47] 王文成, 刘克敏 (2008) 力竭运动对小鼠心肌线粒体自由基代谢和线粒体功能的影响. 广州体育学院学报, 1, 106-107.

[48] 张桂忠, 张勇, 姜宁 (2008) 急性运动中线粒体的抗氧化分子调控. 包头医学院学报, 24, 211-213.

[49] 王磊 (2010) 力竭性运动致大鼠心肌损伤机制的初步探讨. 硕士学位论文, 山东师范大学, 山东.

[50] 郭庆军 (2011) 大鼠游泳运动疲劳模型力竭标准的研究. 硕士学位论文, 第四军医大学, 西安.

[51] 王晓伟, 曹雪滨 (2012) 力竭性运动对心脏影响的研究进展. 医学研究与教育, 2, 60-63.

[52] Boström, P., Mann, N., Wu, J., Quintero, P.A., Plovie, E.R., Panáková, D., et al. (2010) C/EBPβ controls exercise-in- duced cardiac growth and protects against pathological cardiac remodeling. Cell, 23, 1072-1083.

[53] Ryall, K.A., Bezzerides, V.J., Rosenzweig, A. and Saucerman, J.J. (2014) Phenotypic screen quantifying differential regulation of cardiac myocyte hypertrophy identifies CITED4 regulation of myocyte elongation. Journal of Molecular and Cellular Cardiology, 72, 74-84.

分享
Top