简单线性EV回归模型中最小二乘估计量的Berry-Esseen估计
A Note on LS Berry-Esseen Estimator in Simple Linear EV Regression Model

作者: 孟娇 * , 于明明 :南京航空航天大学,江苏 南京;

关键词: 中心极限定理收敛速度EV退化模型最小二乘法估计量Central Limit Theorem Convergence Rate EV Regression Model LS Estimator

摘要: 本论文的目的是研究简单线性存在误差项(EV)退化模型的最小二乘估计量中心极限定理的收敛速度。进一步,Miao,Yang和Shen在[1]中对其实际应用做了详细的介绍。

Abstract: In this paper, we study the convergence rate of the central limit theorems for LS estimator in simple linear errors-in-variables (EV) regression model. Further, its application has been introduced detailedly by Miao, Yang and Shen in[1].

文章引用: 孟娇 , 于明明 (2015) 简单线性EV回归模型中最小二乘估计量的Berry-Esseen估计。 应用数学进展, 4, 29-36. doi: 10.12677/AAM.2015.41004

参考文献

[1] Miao, Y., Yang, G.Y. and Shen, L.M. (2007) The central limit theorem for LS estimator in simple linear EV regression models. Communications in Statistics-Theory and Methods, 36, 2263-2272.

[2] Liu, J.X. and Chen, X.R. (2005) Consistency of LS estimator in simple linear EV regression model. Acta Mathematica Scientia, 25B, 50-58.

[3] Miao,Y. and Liu, W.A. (2009) Moderate deviations for LS estimator in simple linear EV regression model. Journal of Statistical Planning and Inference, 139, 3122-3131.

[4] Cui, H.J. (1997) Asymptotic normality of M-estimator in the EV model. Journal of System Science and Mathematics, 10, 225-236.

[5] Deaton, A. (1985) Panel data from a time series of cross-sections. Journal of Econometrics, 30, 109-126.

[6] Gleser, L.J. (1981) Estimation in a multivariate “error in variables” regression model: Large sample results. Annals of Statistics, 9, 24-44.

[7] Michel, R. and Pfanzagl, J. (1971) The accuracy of normal approximation for minimum contrast estimates. Zeitschrift fur Wahrscheinlichkeitstheorie und Verwandte Gebiete, 18, 73-84.

[8] Petrov, V.V. (1975) Sums of independent random variables. Springer, Berlin.

分享
Top