碱土金属氧化物CaO的准粒子能带及光吸收谱
Quasiparticle Band Structure and Optical Absorption Spectrum of Alkaline-Earth Oxide CaO

作者: 潘 播 , 王能平 :宁波大学理学院微电子科学与工程系,浙江 宁波;

关键词: 准粒子能带密度泛函理论局域密度近似GW修正电子-空穴相互作用光吸收谱Bethe-Salpeter方程Quasiparticle Band Structure Density-Functional Theory Local Density Approximation GW Corrections Electron-Hole Interaction Optical Absorption Spectra Bethe-Salpeter Equation

摘要:
本文使用多体摄动理论计算了碱土金属氧化物CaO的准粒子能带结构和光吸收谱。我们运用GW近似来改进密度泛函理论的局域密度近似对电子交换关联的处理,并计算了CaO准粒子能带。对于电子-空穴激发态,求解二粒子格林函数的Bethe-Salpeter方程可计算电子-空穴激发态和光吸收谱。计算得出CaO的能隙是7.3 eV,与实验结果7.1 eV符合较好。CaO光吸收谱的理论结果与实验数据也一致。特别是在计算CaO激发能最低的激子峰时,计算结果很好地再现了实验结果。

Abstract: This paper reports the quasiparticle band structure and the optical absorption spectrum of alka-line-earth metal oxide CaO, using many-body perturbation theory. The quasiparticle band structure is calculated within the GW approximation. Taking the electron-hole interaction into consideration, electron-hole pair states and optical excitations are obtained by solving the Bethe-Salpeter equation for the electron-hole two-particle Green function. The calculated band gap for CaO is 7.3 eV, which is in good agreement with the experimental results of 7.1 eV. The theoretical result of optical absorption spectrum for CaO is also in agreement with the experimental data. In particular, the calculated excitation energy for the lowest exciton peak in the optical absorption spectrum of CaO reproduces the corresponding experimental result very well.

文章引用: 潘 播 , 王能平 (2015) 碱土金属氧化物CaO的准粒子能带及光吸收谱。 应用物理, 5, 9-16. doi: 10.12677/APP.2015.52002

参考文献

[1] Hohenberg, P. and Kohn, W. (1964) Inhomogeneous electron gas. Physical Review, 136, B864-B871.

[2] Kohn, W. and Sham, L.J. (1965) Self-consistent equations including exchange and correlation effects. Physical Review, 140, A1133-A1138.

[3] Ohno, K., Esfarjani, K. and Kawazoe, Y. (1999) Computational materials science. Springer, Ber-lin.

[4] Onida, G., Reining, L. and Rubio, A. (2002) Electronic excitations: Density-functional versus many-body green’s- function approaches. Reviews of Modern Physics, 74, 601-659.

[5] Hanke, W. and Sham. L.J. (1980) Many-particle effects in the optical spectrum of a semiconductor. Physical Review B, 21, 4656-4673.

[6] Hybertsen, M.S. and Louie, S.G. (1985) First-principles theory of quasiparticles: Calculation of band gaps in semiconductors and insulators. Physical Review Letters, 55, 1418-1421.

[7] Onida, G., Reining, L., Godby, R.W., Del Sole, R. and An-dreoni, W. (1995) Ab initio calculations of the quasiparticle and absorption spectra of clusters: The sodium tetramer. Physical Review Letters, 75, 818-821.

[8] Benedict, L.X., Shirley, E.L. and Bohn, R.B. (1998) Optical absorption of insulators and the electron-hole interaction: An ab initio calculation. Physical Review Letters, 80, 4514-4517.

[9] Rohlfing, M. and Louie, S.G. (1998) Excitonic effects and the optical absorption spectrum of hydro-genated Si clusters. Physical Review Letters, 80, 3320-3323.

[10] Hedin, L. (1965) New method for calculating the one-particle Green’s function with application to the electron-gas problem. Physical Review, 139, A796-A823.

[11] Hedin, L. and Lundqvist, S. (1969) Solid state physics: Advances in research and application. Aca-demic Press, New York.

[12] Strinati, G. (1982) Dynamical shift and broadening of core excitons in semiconductors. Physical Review Letters, 49, 1519-1522.

[13] Rohlfing, M. and Louie, S.G. (1999) Excitons and optical spectrum of the Si(111)-(2 × 1) surface. Physical Review Letters, 83, 856-859.

[14] vander Horst, J.W., Bobbert, P.A., Michels, M.A.J., Brocks, G. and Kelly, P.J. (1999) Ab initio calculation of the electronic and optical excitations in polythiophene: Effects of intra- and interchain screening. Physical Review Letters, 83, 4413-4416.

[15] Grossman, J.C., Rohlfing, M., Mitas, L., Louie, S.G. and Cohen, M.L. (2001) High accuracy many-body calculational approaches for excitations in molecules. Physical Review Letters, 86, 472-475.

[16] Hahn, P.H., Schmidt, W.G. and Bechstedt, F. (2002) Bulk excitonic effects in surface optical spectra. Physical Review Letters, 88, 164021-164024.

[17] Wang, N.P., Rohlfing, M., Krüger, P. and Pollmann, J. (2003) Quasiparticle band structure and optical spectrum of LiF(001). Physical Review B, 67, Article ID: 115111.

[18] Wang, N.P., Rohlfing, M., Krüger, P. and Pollmann, J. (2004) Electronic excitations of CO adsorbed on MgO(001). Applied Physics A, 78, 213-221.

[19] Wang, N.P., Rohlfing, M., Krüger, P. and Pollmann, J. (2004) Image states and excitons at insulator surfaces with negative electron affinity. Physical Review Letters, 91, Article ID: 216805.

[20] Wang, N.P., Rohlfing, M., Krüger, P. and Pollmann, J. (2006) Electronic excitations of the H:Si(001)-(2 × 1) monohydride surface: First-principles calculations. Physical Review B, 74, Article ID: 155405.

[21] Ma, Y., Rohlfing, M. and Gali, A. (2010) Excited states of the negatively charged nitrogen-vacancy color center in diamond. Physical Review B, 81, Article ID: 041204(R).

[22] Rohlfing, M. (2012) Redshift of excitons in carbon nanotubes caused by the environment polarizability. Physical Review Letters, 108, Article ID: 087402.

[23] Vogel, D., Krüger, P. and Pollmann, J. (1996) Self-interaction and relaxation-corrected pseudopotentials for II-VI semiconductors. Physical Review B, 54, 5495-5511.

[24] Filippetti, A. and Fiorentini, V. (2009) A practical first-principles band-theory approach to the study of correlated materials: Self-interaction corrected local-density-functional theory. European Physical Journal B, 71, 139-183.

[25] Erwin, S.C. and Lin, C.C. (1988) The self-interaction-corrected electronic band structure of six alkali fluoride and chloride crystals. Journal of Physics C, 21, 4285-4309.

[26] Baumeier, B., Krüger, P. and Pollmann, J. (2007) Bulk and surface electronic structures of alkaline-earth metal oxides: Bound surface and image-potential states from first principles. Physical Review B, 76, Article ID: 205404.

[27] Baumeier, B., Krüger, P., Pollmann, J. and Vajenine, G.V. (2008) Electronic structure of alkali-metal fluorides, oxides, and nitrides: Density-functional calculations including self-interaction corrections. Physical Review B, 78, Article ID: 125111.

[28] Sommer, C., Krüger, P. and Pollmann, J. (2012) Optical spectra of alkali-metal fluorides. Physical Review B, 86, Article ID: 155212.

[29] Sommer, C., Krüger, P. and Pollmann, J. (2012) Quasiparticle band structure of alkali-metal fluorides, oxides, and nitrides. Physical Review B, 85, Article ID: 165119.

[30] Ching, W.Y., Gan, F. and Huang, M.Z. (1995) Band theory of linear and nonlinear susceptibilities of some binary ionic insulators. Physical Review B, 52, 1596-1611.

[31] Dadsetani, M. and Beiranvand, R. (2009) Optical properties of alkaline-earth metal oxides from first principles. Solid State Sciences, 11, 2099-2105.

[32] Kaneko, Y., Morimoto, K. and Koda, T. (1983) Optical properties of alkaline-earth chalcogenides. II. Vacuum ultraviolet reflection spectra in the synchrotron radiation region of 4-40 eV. Journal of the Physical Society of Japan, 52, 4385-4396.

[33] Hamann, D.R. (1989) Generalized norm-conserving pseudopotentials. Physical Review B, 40, 2980-2987.

[34] Bachelet, G.B., Hamann, D.R. and Schlüter, M. (1982) Pseudopotentials that work: From H to Pu. Physical Review B, 26, 4199-4228.

[35] Rohlfing, M., Krüger, P. and Pollmann, J. (1995) Efficient scheme for GW quasiparticle band-structure calculations with applications to bulk Si and to the Si(001)-(2 × 1) surface. Physical Review B, 52, 1905-1917.

[36] Rohlfing, M., Krüger, P. and Pollmann, J. (1993) Quasiparticle band-structure calculations for C, Si, Ge, GaAs, and SiC using Gaussian-orbital basis sets. Physical Review B, 48, 17791-17805.

[37] Hybertsen, M.S. and Louie, S.G. (1988) Model dielectric matrices for quasiparticle self-energy calculations. Physical Review B, 37, 2733-2736.

[38] Hybertsen, M.S. and Louie, S.G. (1986) Electron correlation in semiconductors and insulators: Band gaps and quasiparticle energies. Physical Review B, 34, 5390-5413.

[39] Fetter, A. and Walecka, J.D. (1973) Quantum theory of many particle systems. McGraw-Hill, San Francisco.

[40] Rohlfing, M. and Louie, S.G. (2000) Electron-hole excitations and optical spectra from first principles. Physical Review B, 62, 4927-4944.

[41] Madelung, O. (2004) Semiconductors: Data handbook. 3rd Edition, Springer, Berlin.

[42] Whited, R.C., Flaten, C.J. and Walker, W.C. (1973) Exciton thermoreflectance of MgO and CaO. Solid State Communications, 13, 1903-1905.

分享
Top