Bioinformatics Analysis of Diguanylate Cyclases and c-di-GMP-Specific Phosphodiesterases from Xanthomonas Species

作者: 邹 霞 , 黄良博 , 何 进 :华中农业大学生命科学技术学院,农业微生物学国家重点实验室,湖北 武汉;

关键词: 黄单胞菌第二信使信号分子c-di-GMP二鸟苷酸环化酶磷酸二酯酶生物信息学Xanthomonas Second Messenger Molecule c-di-GMP Diguanylate Cyclase Phosphodiesterase Bioinformatics


Abstract: The genus Xanthomonas currently comprises 27 species that collectively cause serious diseases in a wide variety of economically important crops and horticultural plants. The bacterial signal transduction mechanism and the bacterium-host plant interaction have been hot issues for micro-biologists, plant pathologists and botanists. c-di-GMP is an ubiquitous bacterial second messenger. It participates in the regulation of many bacterial physiological processes, such as adhesion, EPS synthesis, biofilm formation, motility and virulence, etc. The c-di-GMP turnover is controlled by two functionally opposite enzymes: diguanylate cyclase containing GG(D/E)EF domain and c-di- GMP-specific phosphodiesterase containing EAL or HD-GYP domain. In this study, we performed bioinformatics analysis on the proteins containing GG(D/E)EF, EAL and HD-GYP domians from 15 Xanthomonas strains with complete genome sequences. The distribution and phylogenetic tree analysis revealed that the evolutionary differences of these proteins were related to their hosts; COG and GO analysis demonstrated that these functional proteins were mainly signal transduction related proteins, involved in gene transcription and bacterial motility. These results established solid foundation for the construction of the regulation network mediated by c-di-GMP and for the discovery of new drug targets for Xanthomonas control.

文章引用: 邹 霞 , 黄良博 , 何 进 (2014) 黄单胞菌中c-di-GMP二鸟苷酸环化酶和磷酸二酯酶的生物信息学分析。 计算生物学, 4, 68-82. doi: 10.12677/HJCB.2014.44008


[1] Ryan, R.P., Vorhölter, F.J., Potnis, N., et al. (2011) Pathogenomics of Xanthomonas: Understanding bacterium-plant interactions. Nature Reviews Microbiology, 9, 344-355.

[2] Qian, W., Jia, Y., Ren, S.X., et al. (2005) Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Research, 15, 757-767.

[3] Lee, B.M., Park, Y.J., Park, D.S., et al. (2005) The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Research, 33, 577-586.

[4] Bogdanove, A.J., Koebnik, R., Lu, H., et al. (2011) Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp. Journal of Bacteriology, 193, 5450-5464.

[5] Weinhouse, H., Sapir, S., Amikam, D., Shilo, Y., Volman, G., Ohana, P. and Benziman, M. (1997) c-di-GMP-binding protein, a new factor regulating cellulose synthesis in Acetobacter xylinum. FEBS Letters, 416, 207-211.

[6] Tal, R., Wong, H.C., Calhoon, R., Gelfand, D., Fear, A.L., Volman, G., et al. (1998) Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: Genetic organization and occurrence of conserved domains in isoenzymes. Journal of Bacteriology, 180, 4416-4425.

[7] Römling, U., Galperin, M.Y. and Gomelsky, M. (2013) Cyclic di-GMP: The first 25 years of a universal bacterial second messenger. Microbiology and Molecular Biology Reviews, 77, 1-52.

[8] Thieme, F., Koebnik, R., Bekel, T., et al. (2005) Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete ge-nome sequence. Journal of Bacteriology, 187, 7254-7266.

[9] Bogdanove, A.J., Koebnik, R., Lu, H., et al. (2011) Two new complete genome sequences offer insight into host and tissue specificity of plant pathogenic Xanthomonas spp. Journal of Bacteriology, 193, 5450-5464.

[10] da Silva, A.C.R., Ferro, J.A., Reinach, F.C., et al. (2002) Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature, 417, 459-463.

[11] Jalan, N., Aritua, V., Kumar, D., et al. (2011) Comparative genomic analysis of Xanthomonas axonopodis pv. citrumelo F1, which causes citrus bacterial spot disease, and related strains provides insights into virulence and host specificity. Journal of Bacteriology, 193, 6342-6357.

[12] Jalan, N., Kumar, D., Yu, F., et al. (2013) Complete genome sequence of Xanthomonas citri subsp. citri strain AW12879, a restricted-host-range citrus canker-causing bacterium. Genome Announcements, 1, e00235-13.

[13] Pieretti, I., Royer, M., Barbe, V., et al. (2009) The complete genome sequence of Xanthomonas albilineans provides new insights into the reductive genome evolution of the xylem-limited Xanthomo-nadaceae. BMC Genomics, 10, 616.

[14] Darrasse, A., Carrère, S., Barbe, V., Boureau, T., Arrieta-Ortiz, M.L., Bon-neau, S., et al. (2013) Genome sequence of Xanthomonas fuscans subsp. fuscans strain 4834-R reveals that flagellar motility is not a general feature of xanthomonads. BMC Genomics, 14, 761.

[15] Ryan, R.P., Fouhy, Y., Lucey, J.F., Crossman, L.C., Spiro, S., He, Y.W., et al. (2006) Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proceedings of the National Academy of Sciences of the United States of America, 103, 6712-6717.

[16] Galperin, M.Y. (2004) Bacterial signal transduction network in a genomic perspective. Environmental Microbiology, 6, 552-567.

[17] Christen, M., Christen, B., Folcher, M., Schauerte, A. and Jenal, U. (2005) Identification and characterization of a cyclic di-GMP-specific phosphodiesterase and its allosteric control by GTP. Journal of Biological Chemistry, 280, 30829- 30837.

[18] Rao, F., See, R.Y., Zhang, D., Toh, D.C., Ji, Q. and Liang, Z.X. (2010) YybT is a signaling protein that contains a cyclic dinucleotide phosphodiesterase domain and a GGDEF domain with ATPase activity. Journal of Biological Chemistry, 285, 473-482.

[19] Yang, F., Tian, F., Li, X., Fan, S., Chen, H.M., Wu, M.S., et al. (2014) The degenerate EAL-GGDEF domain protein Filp functions as a cyclic di-GMP receptor and specifically interacts with the PilZ-domain protein PXO_02715 to regulate virulence in Xanthomonas oryzae pv. oryzae. Molecular Plant-Microbe Interactions, 27, 578-589.

[20] Yang, F., Tian, F., Sun, L., Chen, H.M., Wu, M.S., Yang, C.H. and He, C.Y. (2012) A novel two-component system PdeK/PdeR regulates c-di-GMP turnover and virulence of Xanthomonas oryzae pv. oryzae. Molecular Plant-Microbe Interactions, 25, 1361-1369.

[21] Ryan, R.P. (2013) Cyclic di-GMP signalling and the regulation of bacterial virulence. Microbiology, 159, 1286-1297.

[22] Ryan, R.P. and Dow, J.M. (2010) Intermolecular interactions between HD-GYP and GGDEF domain proteins mediate virulence-related signal transduction in Xanthomonas campestris. Virulence, 1, 404-408.

[23] An, S., Caly, D.L., McCarthy, Y., Murdoch, S.L., Ward, J., Febrer, M., et al. (2014) Novel cyclic di-GMP effectors of the YajQ protein family control bacterial virulence. PLoS Pathogens, 10, e1004429.

[24] Tatusov, R.L., Koonin, E.V. and Lipman, D.J. (1997) A genomic perspective on protein families. Science, 278, 631- 637.

[25] Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., et al. (2000) Gene Ontology: Tool for the unification of biology. Nature Genetics, 25, 25-29.

[26] Thompson, J.D., Gibson, T. and Higgins, D.G. (2002) Multiple sequence alignment using ClustalW and ClustalX. Current Protocols in Bioinformatics, Unit 2.3, 1-22.

[27] Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725-2729.

[28] Wang, Y., Tang, H., DeBarry, J.D., Tan, X., Li, J.P., Wang, X.Y., et al. (2012) MCScanX: A toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Research, 40, e49.

[29] Conesa, A., Götz, S., García-Gómez, J.M., Terol, J., Talón, M. and Robles, M. (2005) Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics, 21, 3674-3676.

[30] Ye, J., Fang, L., Zheng, H., Zhang, Y., Chen, J., Zhang, Z.J., et al. (2006) WEGO: A web tool for plotting GO annotations. Nucleic Acids Research, 34, W293-W297.

[31] Ferreira, R.B., Antunes, L.C., Greenberg, E.P. and McCarter, L.L. (2008) Vibrio parahaemolyticus ScrC modulates cyclic dimeric GMP regulation of gene expression relevant to growth on surfaces. Journal of Bacteriology, 190, 851- 860.

[32] Navarro, M.V.A.S., De, N., Bae, N., Wang, Q. and Sondermann, H. (2009) Structural analysis of the GGDEF-EAL domain-containing c-di-GMP receptor FimX. Structure, 17, 1104-1116.

[33] Jenal, U. and Malone, J. (2006) Mechanisms of cyclic-di-GMP signaling in bacteria. Annual Review of Genetics, 40, 385-407.

[34] Chan, C., Paul, R., Samoray, D., Amiot, N.C., Giese, B., Jenal, U. and Schirmer, T. (2004) Structural basis of activity and allosteric control of diguanylate cyclase. Proceedings of the National Academy of Sciences of the United States of America, 101, 17084-17089.

[35] Cui, T. and He, Z.G. (2012) C-di-GMP signaling and implications for pathogenesis of My-cobacterium tuberculosis. Chinese Science Bulletin, 57, 4387-4393.

[36] Povolotsky, T.L. and Hengge, R. (2012) “Life-style” control networks in Escherichia coli: Signaling by the second messenger c-di-GMP. Journal of Biotech-nology, 160, 10-16.

[37] Navarro, M.V.A.S., Newell, P.D., Krasteva, P.V., Chatterjee, D., Madden, D.R., O’Toole, G.A., et al. (2011) Structural basis for c-di-GMP-mediated inside-out signaling controlling periplasmic proteolysis. PLoS Biology, 9, e1000588.

[38] Hurley, J.H. (2003) GAF domains: Cyclic nucleotides come full circle. Science Signaling, 2003, pe1.

[39] Lin, Z., Johnson, L.C., Weissbach, H., Brot, N., Lively, M.O. and Lowther, W.T. (2007) Free methionine-(R)-sulfoxide reductase from Escherichia coli reveals a new GAF domain function. Proceedings of the National Academy of Sciences of the United States of America, 104, 9597-9602.

[40] Sardiwal, S., Kendall, S.L., Movahedzadeh, F., Rison, S.C.G., Stoker, N.G. and Djordjevic, S. (2005) A GAF domain in the Hypoxia/NO-inducible Mycobacterium tuberculosis DosS protein binds haem. Journal of Molecular Biology, 353, 929-936.

[41] Boscá, L., Zeini, M., Través, P.G. and Hortelano, S. (2005) Nitric oxide and cell viability in inflammatory cells: A role for NO in macrophage function and fate. Toxicology, 208, 249-258.

[42] Kalia, D., Merey, G., Nakayama, S., Zheng, Y., Zhou, J., Luo, Y.L., et al. (2013) Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chemical Society Reviews, 42, 305- 341.

[43] Amikam, D. and Galperin, M.Y. (2006) PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics, 22, 3-6.

[44] Ryjenkov, D.A., Simm, R., Römling, U. and Gomelsky, M. (2006) The PilZ domain is a receptor for the second messenger c-di-GMP: The PilZ domain protein YcgR controls motility in enterobacteria. Journal of Biological Chemistry, 281, 30310-30314.

[45] De, N., Pirruccello, M., Krasteva, P.V., Bae, N., Raghavan, R.V. and Sondermann, H. (2008) Phosphorylation-inde- pendent regulation of the diguanylate cyclase WspR. PLoS Biology, 6, e67.

[46] Petters, T., Zhang, X., Nesper, J., Treuner-Lange, A., Gomez-Santos, N., Hoppert, M., et al. (2012) The orphan histidine protein kinase SgmT is a c-di-GMP receptor and regulates composition of the extracellular matrix together with the orphan DNA binding response regulator DigR in Myxococcus xanthus. Molecular Microbiology, 84, 147-165.

[47] Tuckerman, J.R., Gonzalez, G. and Gilles-Gonzalez, M.A. (2011) Cyclic di-GMP activation of polynucleotide phosphorylase signal-dependent RNA processing. Journal of Molecular Biology, 407, 633-639.

[48] Sudarsan, N., Lee, E.R. and Weinberg, Z. (2008) Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science, 321, 411-413.

[49] Breaker, R.R. (2011) Prospects for riboswitch discovery and analysis. Molecular Cell, 43, 867-879.

[50] Chin, K.H., Lee, Y.C., Tu, Z.L., Chen, C.H., Tseng, Y.H., Yang, J.M., et al. (2010) The cAMP receptor-like protein CLP is a novel c-di-GMP receptor linking cell-cell signaling to virulence gene expression in Xanthomonas campestris. Journal of Molecular Biology, 396, 646-662.

[51] Li, T.N., Chin, K.H., Liu, J.H., Wang, A.H.J. and Chou, S.H. (2009) XC1028 from Xanthomonas campestris adopts a PilZ domain-like structure without ac-di-GMP switch. Proteins: Structure, Function, and Bioinformatics, 75, 282-288.

[52] He, Y.W., Ng, A.Y., Xu, M., Lin, K., Wang, L.H., Dong, Y.H. and Zhang, L.H. (2007) Xanthomonas campestris cell-cell communication involves a putative nucleotide receptor protein Clp and a hierarchical signalling network. Molecular Microbiology, 64, 281-292.

[53] Dow, J.M., Fouhy, Y., Lucey, J.F. and Ryan, R.P. (2006) The HD-GYP domain, cyclic di-GMP signaling, and bacterial virulence to plants. Molecular Plant-Microbe Interactions, 19, 1378-1384.

[54] Slater, H., Alvarez-Morales, A., Barber, C.E., Daniels, M.J. and Dow, J.M. (2000) A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris. Molecular Microbiology, 38, 986-1003.

[55] Andrade, M.O., Alegria, M.C., Guzzo, C.R., Docena, C., Rosa, M.C.P., Ramos, C.H.I. and Farah, C.S. (2006) The HD-GYP domain of RpfG mediates a direct linkage between the RpfG quorum-sensing pathway and a subset of diguanylate cyclase proteins in the phytopathogen Xanthomonas axonopodis pv. citri. Molecular Microbiology, 62, 537-551.

[56] Ryan, R.P., McCarthy, Y., Kiely, P.A., O’Connor, R., Farah, C.S., Armitage, J.P. and Dow, J.M. (2012) Dynamic complex formation between HD-GYP, GGDEF and PilZ domain proteins regulates motility in Xanthomonas campestris. Molecular Microbiology, 86, 557-567.