求解压缩传感问题的一种投影算法
A Projection Algorithm for Compressive Sensing

作者: 于丽超 , 屈 彪 :曲阜师范大学管理学院,山东 日照;

关键词: 凸可行问题压缩传感投影算法Convex Feasibility Problem Compressed Sensing Projection Method

摘要:
本文在将压缩传感的最优化问题转化为凸可行问题的基础上,设计了一种投影算法来求解凸可行问题,进而来求解压缩传感问题。

Abstract: In the paper, we first transform the optimization problem of compressed sensing into a convex feasibility problem. Then, a projection method is presented to solve it.

文章引用: 于丽超 , 屈 彪 (2015) 求解压缩传感问题的一种投影算法。 运筹与模糊学, 5, 1-5. doi: 10.12677/ORF.2015.51001

参考文献

[1] Donoho, D.L. (2006) Compressed sensing. IEEE Transactions on Information Theory, 52, 1289-1306.

[2] Candes, E., Romberg, J. and Tao, T. (2006) Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52, 489-509.

[3] 杨凡 (2010) 压缩传感图像重建的研究. 硕士论文, 江西科技师范学院, 南昌.

[4] Gamper, U., Boesiger, P. and Kozerke, S. (2008) Compressed sensing in dynamic MRI. Magnetic Resonance in Medicine, 59, 365-373.

[5] Carmi, A., Censor, Y. and Gurfil, P. (2012) Convex feasibility modeling and projection methods for sparse signal recovery. Journal of Computational and Applied Mathematics, 236, 4318-4335.

[6] Boyd, S. and Vandenberghe, L. (2009) Convex optimization. Cambridge University Press, New York.

[7] Zarantonello, E.H. (1971) Projections on convex sets in Hilbert space and spectral theory. In: Zarantonello, E.H., Ed., Contributions to Nonlinear Functional Analysis, Academic Press, New York, 237-424.

分享
Top