﻿ 基于松动区理论的高速铁路浅埋隧道初支变形处理方法

# 基于松动区理论的高速铁路浅埋隧道初支变形处理方法The Initial Support Deformation Treatment of High Speed Railway Shallow Buried Tunnel Based on Excavation Disturbed Zone Theory

Abstract: Featured by larger excavated section and lower strength of surrounding rock, it’s not easy for HSR (High Speed Railway) shallow buried tunnel to form load-bearing arch after excavation, thus always prone to surface subsidence, and resulting in serious deformation, chipping and cracking of the ini-tial support. To ensure normal subsequent construction and the quality of secondary lining, the de-formed part of the initial support intruding into the secondary lining needs to be replaced and rein-forced. In order to determine the impact of tunnel excavation on surrounding rock, taking the initial support deformation of a certain HSR shallow buried tunnel for example, this paper carries out stress numerical simulation of surrounding rock in the case of support-free excavation, and finally works out the scope of disturbed zone in each construction stage, by determining the set of specific critical failure points radially distributed along the outer excavation contour. On this basis, combin-ing the treatment measures of similar projects, the initial support modal suitable for subsequent excavation can be determined, and all the monitoring indicators during subsequent construction can meet the design requirements. Engineering practices has proved that the disturbed zone analysis method considering certain emergency capacity is effective and feasible.

[1] 关宝树 (1993) 隧道力学概论. 西南交通大学出版社, 成都.

[2] 王梦恕 (2006) 隧道工程浅埋暗挖法施工要点. 隧道建设, 5, 1-4.

[3] 魏新江 (2004) 浅埋隧道的地表沉陷分析. 地下空间, 4, 510-512.

[4] 彭超 (2013) 公路隧道穿越浅埋断层破碎带工程处理技术. 现代隧道技术, 1, 134-138.

[5] 项志敏 (2012) 浅埋隧道围岩稳定性分析与施工关键技术研究. 博士论文, 中南大学, 长沙.

[6] 王夫亮 (1998) 关于确定围岩松弛区半径及其相关问题的探讨. 铁道工程学报, 2, 57-65.

[7] Xiao, S.G. (2010) Determination of the excavation-disturbed zone and corresponding stability coefficient of surrounding rock in tunnel engineering by applying the finite element method. Proceedings of International Sym-Posiumon Geomechanics and Geotechnics: From Micro to Macro, 10-13 October 2010, Shanghai, 977-982.

[8] 郭毅, 肖世国 (2013) 贵广铁路客运专线龙围隧道围岩开挖松动区分析. 地下空间与工程学报, 3, 615-619.

[9] 郑颖人, 邱陈瑜, 张红, 等 (2008) 关于土体隧洞围岩稳定性分析方法的探索. 岩石力学与工程学报, 10, 1968-1980.

Top