蛋白质质量控制系统在增强酿酒酵母耐热性中的作用及机制
Role and Mechanism of Protein Quality Control System in Enhancing the Thermotolerance of Saccharomyces cerevisiae

作者: 吴宏宇 , 吴显伟 :山东大学微生物技术国家重点实验室,济南 ;山东大学泰山学堂,济南 ; 赵建志 , 鲍晓明 , 侯 进 , 沈 煜 :山东大学微生物技术国家重点实验室,济南 ; 王林风 , 高 楠 :车用生物燃料技术国家重点实验室,南阳 ;

关键词: 酿酒酵母热胁迫耐热性热休克蛋白泛素连接酶Saccharomyces cerevisiae Heat Shock Stress Thermotolerance Heat Shock Protein Ubiquitin Ligases

摘要:
提高发酵温度被认为有利于降低乙醇等产品的生产成本,但高温条件不利于酿酒酵母的生长与代谢,其中,高温引起的蛋白质不稳定是主要原因之一。酿酒酵母含有主要由热休克蛋白和泛素降解系统组成的复杂的蛋白质质量控制系统,通过辅助蛋白折叠、错误折叠蛋白修正以及降解,在不同层次缓解高温对酿酒酵母的胁迫。本文综述了蛋白质质量控制系统的调控机制以及该系统对酿酒酵母耐热性能的影响研究进展。

Abstract: Increasing the fermentation temperature is considered to be beneficial to decrease the production cost of biochemicals such as ethanol. However, the high temperature leads to the unstable state of protein, which is harmful to the growth and metabolism of Saccharomyces cerevisiae. The protein quality control system of S. cerevisiae, composed by heat shock protein and ubiquitin-proteasome system, can release the heat shock stress by assisting the protein folding, refolding or degrading the misfolded protein. In this article, the regulatory mechanism of protein quality control system and its role to thermotolerance in Saccharomyces cerevisiae are reviewed.

文章引用: 吴宏宇 , 吴显伟 , 赵建志 , 鲍晓明 , 侯 进 , 王林风 , 高 楠 , 沈 煜 (2014) 蛋白质质量控制系统在增强酿酒酵母耐热性中的作用及机制。 生物过程, 4, 90-96. doi: 10.12677/BP.2014.44012

参考文献

[1] Verghese, J., Abrams, J., Wang, Y. and Morano, K.A. (2012) Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system. Microbiology and Molecular Biology Reviews, 76, 115-158.

[2] Lee, J., Kim, J.-H., Biter, A.B., Sielaff, B., Lee, S. and Tsai, F.T. (2013) Heat shock protein (Hsp) 70 is an activator of the Hsp104 motor. Proceedings of the National Academy of Sciences, 110, 8513-8518.

[3] Patriarca, E.J. and Maresca, B. (1990) Acquired thermotolerance following heat shock protein synthesis prevents impairment of mitochondrial ATPase activity at elevated temperatures in Saccharomyces cerevisiae. Experimental Cell Research, 190, 57-64.

[4] Shapiro, R.S. and Cowen, L.E. (2012) Uncovering cellular circuitry controlling temperature-dependent fungal morphogenesis. Virulence, 3, 400-404.

[5] Hou, J., Österlund, T., Liu, Z., Petranovic, D. and Nielsen, J. (2013) Heat shock response improves heterologous protein secretion in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 97, 3559-3568.

[6] Morano, K.A., Grant, CM. and Moye-Rowley, W.S. (2012) The response to heat shock and oxidative stress in Saccharomycescerevisiae. Genetics, 190, 1157-1195.

[7] Suutari, M., Liukkonen, K. and Laakso, S. (1990) Temperature adaptation in yeasts: The role of fatty acids. Journal of General Microbiology, 136, 1469-1474.

[8] Swan, T.M. and Watson, K. (1998) Stress tolerance in a yeast sterol auxotroph: role of ergosterol, heat shock proteins and trehalose. FEMS Microbiology Letters, 169, 191-197.

[9] Simola, M., Hänninen, A.L., Stranius, S.M. and Makarow, M. (2000) Trehalose is required for conformational repair of heat‐denatured proteins in the yeast endoplasmic reticulum but not for maintenance of membrane traffic functions after severe heat stress. Molecular Microbiology, 37, 42-53.

[10] Doyle, S.M., Genest, O. and Wickner, S. (2013) Protein rescue from aggregates by po-werful molecular chaperone machines. Nature Reviews Molecular Cell Biology, 14, 617-629.

[11] Jarolim, S., Ayer, A., Pillay, B., Gee, A.C., Phrakaysone, A., Perrone, G.G., Breitenbach, M. and Dawes, I.W. (2013) Saccharomyces cerevisiae genes involved in survival of heat shock. G3: Genes| Genomes| Genetics, 3, 2321-2333.

[12] Hashikawa, N., Mizukami, Y., Imazu, H. and Sakurai, H. (2006) Mutated yeast heat shock transcription factor activates transcription independently of hyperphosphorylation. Journal of Biological Chemistry, 281, 3936-3942.

[13] Yamamoto, A., Mizukami, Y. and Sakurai, H. (2005) Identification of a novel class of target genes and a novel type of binding sequence of heat shock transcription factor in Saccharomyces cerevisiae. Journal of Biological Chemistry, 280, 11911-11919.

[14] Wanless, A.G., Lin, Y. and Weiss, E.L. (2014) Cell morphogenesis proteins are translationally controlled through UTRs by the Ndr/LATS target Ssd1. PLoS ONE, 9, e85212.

[15] Craig, E.A., Gambill, B.D. and Nelson, R.J. (1993) Heat shock proteins: Molecular chaperones of protein biogenesis. Microbiological Reviews, 57, 402-414.

[16] Hasin, N., Cusack, S.A., Ali, S.S., Fitzpatrick, D.A. and Jones, G.W. (2014) Global transcript and phenotypic analysis of yeast cells expressing Ssa1, Ssa2, Ssa3 or Ssa4 as sole source of cytosolic Hsp70-Ssa chaperone activity. BMC Genomics, 15, 194.

[17] Vogel, M., Bukau, B. and Mayer, M.P. (2006) Allosteric regulation of Hsp70 chaperones by a proline switch. Molecular Cell, 21, 359-367.

[18] Nakamoto, H., Fujita, K., Ohtaki, A., Watanabe, S., Narumi, S., Maruyama, T., Suenaga, E., Misono, T.S., Kumar, P.K., Goloubinoff, P. and Yoshikawa, H. (2014) Physical interaction between bacterial heat shock protein (Hsp) 90 and Hsp70 chaperones mediates their cooperative action to refold denatured proteins. Journal of Biological Chemistry, 289, 6110-6119.

[19] Cashikar, A.G., Duennwald, M. and Lindquist, S.L. (2005) A chaperone pathway in protein disaggregation HSP26 alters the nature of protein aggregates to facilitate reactivation by HSP104. Journal of Biological Chemistry, 280, 23869-23875.

[20] Tessarz, P., Mogk, A. and Bukau, B. (2008) Substrate threading through the central pore of the Hsp104 chaperone as a common mechanism for protein disaggregation and prion propagation. Molecular Microbiology, 68, 87-97.

[21] Schirmer, E.C., Queitsch, C., Kowal, A.S., Parsell, D.A. and Lindquist, S. (1998) The ATPase activity of Hsp104, effects of environmental conditions and mutations. Journal of Biological Chemistry, 273, 15546-15552.

[22] Schirmer, E.C., Ware, D.M., Queitsch, C., Kowal, A.S. and Lindquist, S.L. (2001) Subunit interactions influence the biochemical and biological properties of Hsp104. Proceedings of the National Academy of Sciences of the United States of America, 98, 914-919.

[23] Hänninen, A.L., Simola, M., Saris, N. and Makarow, M. (1999) The cytoplasmic chaperone Hsp104 is required for conformational repair of heat-denatured proteins in the yeast endoplasmic reticulum. Molecular Biology of the Cell, 10, 3623-3632.

[24] Wendler, P., Shorter, J., Snead, D., Plisson, C., Clare, D.K., Lindquist, S. and Saibil, H.R. (2009) Motor mechanism for protein threading through Hsp104. Molecular Cell, 34, 81-92.

[25] Haslbeck, M., Braun, N., Stromer, T., Richter, B., Model, N., Weinkauf, S. and Buchner, J. (2004) Hsp42 is the general small heat shock protein in the cytosol of Saccharomyces cerevisiae. The EMBO Journal, 23, 638-649.

[26] Ehrnsperger, M., Gräber, S., Gaestel, M. and Buchner, J. (1997) Binding of non-native protein to Hsp25 during heat shock creates a reservoir of folding intermediates for reactivation. The EMBO Journal, 16, 221-229.

[27] Haslbeck, M. (2002) sHsps and their role in the chaperone network. Cellular and Molecular Life Sciences CMLS, 59, 1649-1657.

[28] Specht, S., Miller, S.B., Mogk, A. and Bukau, B. (2011) Hsp42 is required for sequestration of protein aggregates into deposition sites in Saccharomyces cerevisiae. The Journal of Cell Biology, 195, 617-629.

[29] Krzewska, J., Langer, T. and Liberek, K. (2001) Mitochondrial Hsp78, a member of the Clp/Hsp100 family in Saccharomyces cerevisiae, cooperates with Hsp70 in protein refolding. FEBS Letters, 489, 92-96.

[30] Zattas, D. and Hochstrasser, M. (2014) Ubiquitin-dependent protein degradation at the yeast endoplasmic reticulum and nuclear envelope. Critical Reviews in Biochemistry and Molecular Biology, 1-17.

[31] Theodoraki, M.A., Nillegoda, N.B., Saini, J. and Caplan, A.J. (2012) A network of ubiquitin ligases is important for the dynamics of misfolded protein aggregates in yeast. Journal of Biological Chemistry, 287, 23911-23922.

[32] Amm, I., Sommer, T. and Wolf, D.H. (2014) Protein quality control and elimination of protein waste: The role of the ubiquitin-proteasome system. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1843, 182-196.

[33] Glickman, M.H. and Ciechanover, A. (2002) The ubiquitin-proteasome proteolytic pathway: Destruction for the sake of construction. Physiological Reviews, 82, 373-428.

[34] Krsmanović, T. and Kölling, R. (2004) The HECT E3 ubiquitin ligase Rsp5 is important for ubiquitin homeostasis in yeast. FEBS Letters, 577, 215-219.

[35] Shahsavarani, H., Sugiyama, M., Kaneko, Y., Chuenchit, B. and Harashima, S. (2012) Superior thermotolerance of Saccharomyces cerevisiae for efficient bioethanol fermentation can be achieved by overexpression of RSP5 ubiquitin ligase. Biotechnology Advances, 30, 1289-1300.

[36] Haitani, Y. and Takagi, H. (2008) Rsp5 is required for the nuclear export of mRNA of HSF1 and MSN2/4 under stress conditions in Saccharomyces cerevisiae. Genes to Cells, 13, 105-116.

[37] Haitani, Y., Shimoi, H. and Takagi, H. (2006) Rsp5 regulates expression of stress proteins via post-translational modification of Hsf1 and Msn4 in Saccharomyces cerevisiae. FEBS Letters, 580, 3433-3438.

[38] Shcherbik, N. and Pestov, D.G. (2011) The ubiquitin ligase Rsp5 is required for ribosome stability in Saccharomyces cerevisiae. RNA, 17, 1422-1428.

[39] Alper, H., Moxley, J., Nevoigt, E., Fink, G.R. and Stephanopoulos, G. (2006) Engineering yeast transcription machinery for improved ethanol tolerance and production. Science, 314, 1565-1568.

[40] Morano, K.A., Grant, C.M. and Moye-Rowley, W.S. (2012) The response to heat shock and oxidative stress in Saccharomyces cerevisiae. Genetics, 190, 1157-1195.

[41] Noguchi, C., Watanabe, D., Zhou, Y., Akao, T. and Shimoi, H. (2012) Association of constitutive hyperphosphorylation of Hsf1p with a defective ethanol stress response in Saccharomyces cerevisiae sake yeast strains. Applied and Environmental Microbiology, 78, 385-392.

分享
Top