﻿ 时间序列分析在山岳型景区用水量预测的研究与应用

# 时间序列分析在山岳型景区用水量预测的研究与应用Study and Application of the Time Series Analysis for Water Demand Forecasting in the Mountainous Tourist Area

Abstract: With the development of the tourism industry, the number of tourists in the mountainous tourist area has increased year after year, and the resources need to be used harmoniously. Meanwhile, water is the most important resources, and rational and effective use of water resources will help to improve the overall competitiveness of the scenic area. Aimed at the characteristics of the mountain scinic area, this paper has studied and analyzed ARIMA model and its modeling process of the time series .The statistical data from Huangshan Scenic Area Water Supply Company of the first half of 2012 are applied to establish the water consumption ARIMA model for predictive analysis in Huangshan Scenic Area. The results have indicated that water consumption in Huangshan Scenic Area belongs to non-stationary time series and the fitting effect of ARIMA model is favorable.

[1] 周德懋, 李舟军, 康荣雷 (2009) 基于时间序列分析的网络流量预测模型研究. 现代电子技术, 32, 115-117.

[2] 王燕 (2005) 应用时间序列分析. 中国人民大学出版社, 北京.

[3] 薛微 (2011) Statistical analysis and SPSS application. 中国人民大学出版社, 北京.

[4] 李洪雷, 管群 (2009) 基于VC的时间序列分析法的应用研究. 计算机仿真, 7, 113-117.

[5] 武伟, 刘希玉, 杨怡, 王努 (2010) 时间序列分析方法ARMA，GARCH两种常用模型. 计算机技术与发展, 20, 247-249, 253.

[6] 吕志涛 (2014) 时间序列分析方法在郑州市降水量预报中的应用. 南水北调与水利科技, 1, 35-37, 56.

[7] 范涛涛, 寇艳廷, 刘晨, 阎红灿 (2013) 时间序列分析中数据的平稳性判定研究. 现代电子技术, 36, 66-68, 72.

[8] An, N., Zhao, W.G., Wang, J.Z., Shang, D. and Zhao, E.D. (2013) Us-ing multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting. Energy, 6, 279-288.

[9] 汤岩, 王福林, 焦扬 (2014) 黑龙江省农业机械总动力预测分析——基于ARIMA模型. 农机化研究, 36, 44-47.

[10] 李嘉菲, 周斌, 刘大有等 (2014) 海量信息融合方法及其在状态评价中的应用. 软件学报, 9, 2026-2036.

Top