时间序列分析在山岳型景区用水量预测的研究与应用
Study and Application of the Time Series Analysis for Water Demand Forecasting in the Mountainous Tourist Area

作者: 黎 杰 , 朱珊珊 , 宣善立 :合肥工业大学计算机与信息学院,合肥; 凌 亮 :黄山风景区供水有限公司,黄山;

关键词: 时间序列分析ARIMA预测Time Series Analysis ARIMA Forecast

摘要:
随着旅游事业的发展,山岳型景区的游客数量在逐年增加,景区内的各项资源都需要协调使用。其中水是最重要的一项资源,合理有效地利用供水资源有助于提高景区的综合竞争力。本文针对山岳型景区的自身特点,研究分析时间序列分析中的ARIMA (Autoregressive Integrated Moving Average Model)模型以及其建模流程。同时结合2012年上半年黄山风景区供水公司的统计数据,建立相应的ARIMA模型,并进行预测分析。结果表明:ARIMA模型对黄山风景区用水量数据预测的拟合效果良好。

Abstract: With the development of the tourism industry, the number of tourists in the mountainous tourist area has increased year after year, and the resources need to be used harmoniously. Meanwhile, water is the most important resources, and rational and effective use of water resources will help to improve the overall competitiveness of the scenic area. Aimed at the characteristics of the mountain scinic area, this paper has studied and analyzed ARIMA model and its modeling process of the time series .The statistical data from Huangshan Scenic Area Water Supply Company of the first half of 2012 are applied to establish the water consumption ARIMA model for predictive analysis in Huangshan Scenic Area. The results have indicated that water consumption in Huangshan Scenic Area belongs to non-stationary time series and the fitting effect of ARIMA model is favorable.

文章引用: 黎 杰 , 朱珊珊 , 宣善立 , 凌 亮 (2014) 时间序列分析在山岳型景区用水量预测的研究与应用。 软件工程与应用, 3, 145-151. doi: 10.12677/SEA.2014.36017

参考文献

[1] 周德懋, 李舟军, 康荣雷 (2009) 基于时间序列分析的网络流量预测模型研究. 现代电子技术, 32, 115-117.

[2] 王燕 (2005) 应用时间序列分析. 中国人民大学出版社, 北京.

[3] 薛微 (2011) Statistical analysis and SPSS application. 中国人民大学出版社, 北京.

[4] 李洪雷, 管群 (2009) 基于VC的时间序列分析法的应用研究. 计算机仿真, 7, 113-117.

[5] 武伟, 刘希玉, 杨怡, 王努 (2010) 时间序列分析方法ARMA,GARCH两种常用模型. 计算机技术与发展, 20, 247-249, 253.

[6] 吕志涛 (2014) 时间序列分析方法在郑州市降水量预报中的应用. 南水北调与水利科技, 1, 35-37, 56.

[7] 范涛涛, 寇艳廷, 刘晨, 阎红灿 (2013) 时间序列分析中数据的平稳性判定研究. 现代电子技术, 36, 66-68, 72.

[8] An, N., Zhao, W.G., Wang, J.Z., Shang, D. and Zhao, E.D. (2013) Us-ing multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting. Energy, 6, 279-288.

[9] 汤岩, 王福林, 焦扬 (2014) 黑龙江省农业机械总动力预测分析——基于ARIMA模型. 农机化研究, 36, 44-47.

[10] 李嘉菲, 周斌, 刘大有等 (2014) 海量信息融合方法及其在状态评价中的应用. 软件学报, 9, 2026-2036.

分享
Top