大规模天线系统中MRC解码法的性能分析
Performance Analysis of the MRC Decoder for a Massive MIMO System

作者: 王海泉 , 吴鹏云 , 金瑜瑜 , 沈 雷 :杭州电子科技大学通信工程学院,杭州;

关键词: 大规模天线最大比合并成对错误概率慢平坦衰落信道状态信息Massive MIMO Maximal Ratio Combining Pair-Wise Error Probability Slow Flat Fading Channel State Information

摘要:
研究基于大规模天线上行系统,对接收端采用最大比合并(MRC)解码法的成对错误概率(PEP)进行了分析。假定信道慢平坦衰落,基站已知信道状态信息。第一,介绍了MRC解码器的解码方法;第二,基于此方法,推导了系统的PEP公式;第三,针对两种不同情况推导出PEP的渐近趋势。分析表明:1) 当天线数固定时,信噪比趋于无穷大所得到的PEP不为零;2) 当信噪比固定时,天线数趋于无穷大时PEP降为零。最后,讨论了能量尺度律(power scale law)。数值仿真证实了上述结论的正确性。

Abstract: Based on a massive multiple-input, multiple-output (MIMO) uplink system, the pair-wise error probability (PEP) of the maximal ratio combining (MRC) decoder on the receiver is analyzed. The channel is assumed to be slow flat fading, and the base station (BS) knows the instant channel state information. Firstly, the MRC decoder is defined for the system. Secondly, a formula calculating the PEP of the system with the decoder is derived. Thirdly, asymptotic analyses of the PEP based on two different situations are given. These analyses reveal facts: 1) The PEP cannot go to zero even when signal-to-noise (SNR) goes to infinity; 2) The PEP goes to zero when the number of antennas at BS is increased to infinity and SNR is fixed. Finally, power scale law on PEP is discussed. Numerical simulations firm the above conclusions.

文章引用: 王海泉 , 吴鹏云 , 金瑜瑜 , 沈 雷 (2014) 大规模天线系统中MRC解码法的性能分析。 无线通信, 4, 126-135. doi: 10.12677/HJWC.2014.46020

参考文献

[1] 谢, 维斯瓦纳斯 (2009) 无线通信基础. 人民邮电出版社, 北京.

[2] Kang, H.G., Park, J., An, T., et al. (2007) An ML decoding algorithm with reduced complexity for multi-input multi-output systems. Signals, Systems and Elec-tronics, Montreal, Que, 30 July-2 August 2007, 339-342.

[3] Weingarten, H., Steinberg, Y. and Shamai, S. (2006) The capacity region of the Gaussian multiple-input multiple- output broadcast channel. IEEE Transactions on Infor-mation Theory, 52, 3936-3964.

[4] Marzetta, T.L. (2010) Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9, 3590-3600.

[5] Rusek, F., Persson, D., Lau, B.K., et al. (2013) Scaling up MIMO: Opportunities and challenges with very large arrays. Signal Processing Magazine, IEEE, 30, 40-60.

[6] Bjornson, E., Kountouris, M. and Debbah, M. (2013) Massive MIMO and small cells: Improving energy efficiency by optimal soft-cell coordination. Telecommunications, Casablanca, 6-8 May 2013, 1-5.

[7] Larsson, E.G., Edfors, O., Tufvesson, F., et al. (2014) Massive MIMO for next generation wireless systems. Communications Magazine, IEEE, 52, 186-195.

[8] 王海荣, 王玉辉, 黄永明, 等 (2013) 大规模MIMO多小区TDD系统中的导频污染减轻方法. 信号处理, 2, 171-180.

[9] Ngo, H.Q., Larsson, E.G. and Marzetta, T.L. (2013) Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Transactions on Communications, 61, 1436-1449.

[10] Yang, H. and Marzetta, T.L. (2013) Performance of conjugate and zero-forcing beamforming in large-scale antenna systems. IEEE Journal on Selected Areas in Communications, 31, 172-179.

[11] 李菊芳, 赵睿, 江彬, 等 (2014) 基于大规模天线的多用户MISO下行链路频谱效率分析. 通信学报, 2, 125-136.

[12] Fehske, A., Fettweis, G., Malmodin, J., et al. (2011) The global footprint of mobile communications: The ecological and economic perspective. Communications Magazine, IEEE, 49, 55-62.

[13] Kim, N., Lee, Y. and Park, H. (2008) Performance analysis of MIMO system with linear MMSE receiver. IEEE Transactions on Wireless Communications, 7, 4474-4478.

[14] Ngo, H.Q., Duong, T.Q. and Larsson, E.G. (2011) Uplink performance analysis of multicell MU-MIMO with zero-forcing receivers and perfect CSI. Communication Technologies Workshop, Stockholm, 19-21 October 2011, 40-45.

[15] Wang, H.Q., Chen, R.M. and Shen, L. (2012) Performance analysis of ZF and MMSE re-ceivers in uplink of MU-MIMO system. Communications in China, Beijing, 15-17 August 2012, 114-119.

[16] Wu, M.W., Lin, X.Z. and Kam, P.Y. (2011) New exponential lower bounds on the gaussian Q-function via Jensen’s in-equality. Vehicular Technology Conference, Yokohama, 15-18 May 2011, 1-5.

分享
Top