N掺杂ZnO (100)表面对其电学性质的影响
Influence of N Doping on Electronic Properties of ZnO Surface

作者: 胡宏铎 :湖北工程职业学院信息工程系,黄石; 陈兰丽 :江西科技师范大学江西省通信与光电子重点实验室,南昌;

关键词: ZnO表面p型第一性原理ZnO Surface p-Type First Principles

基于密度泛函理论的第一性原理计算了N掺杂ZnO (100)表面的形成能和电学性质。首先,我们分析了N掺杂ZnO (100)表面不同层时的结构弛豫情况,接着计算了N掺杂表面的形成能和电子结构。结果表明N掺杂后体系发生较大的晶格畸变。N掺杂块体ZnO的形成能比掺杂表面时的形成低。结果表明N很容易聚集在体内而不是表面。从N掺杂ZnO (100)表面的电子结构中得知,体系的费米能级向价带移动,这主要归因于N-p态,同时体系表现为p型特征。

Abstract: A theory of formation energy and electronic properties of N doping ZnO (100) surface is proposed on the first principles based on density function theory. First, we have analyzed the relaxation of the structure of N doping ZnO (100) surface at different layers. Later, we have calculated the formation energy and electronic structure of N doping ZnO (100) surface. The results show that there is a large lattice distortion after N doping. And the formation energy is lowest in the bulk ZnO when N is doped in the bulk ZnO. The results show that N atom easily accumulates in the body instead on the surface layers. The calculated electronic structure shows that the Fermi level shifts into the valence band which is contributed by N-p states, and the system after doping demonstrates as p-type.

文章引用: 胡宏铎 , 陈兰丽 (2014) N掺杂ZnO (100)表面对其电学性质的影响。 凝聚态物理学进展, 3, 46-52. doi: 10.12677/CMP.2014.34007


[1] Qiu, Y.F., Fan, H.B., et al. (2014) Effect of nitrogen doping on the photo-catalytic properties of nitrogen doped ZnO tetrapods. Materials Letters, 131, 64-66.

[2] Zeng, Y.J., Ye, Z.Z., Xu, W.Z., Li, D.Y., Lu, J.G., Zhu, L.P. and Zhao, B.H. (2006) Dopant source choice for formation of p-type ZnO:Li acceptor. Applied Physics Letters, 88, 062107.

[3] Li, Q., Fan, G.H., et al. (2010) First-principles calculations of ZnO polar surfaces and N adsorption mechanism. Acta Physica Sinica, 59, 4170-4108.

[4] Xu, W.Z., Ye, Z.Z., Zeng, Y.J., Zhu, L.P., Zhao, B.H., Jiang, L., Lu, J.G., He, H.P. and Zhang, S.B. (2006) ZnO light-emitting diode grown by plasma-assisted metal organic chemical vapor deposition. Applied Physics Letters, 88, 173506-173513.

[5] Zhu, X.M., Wu, H.-Z., et al. (2010) Photoluminescence and resonant Ranab scattering in N-doped ZnO thin films. Optics Communications, 283, 2695-2699.

[6] Rajbongshi, B.M., Ramchiary, A. and Samdarshi, S.K. (2014) Influence of N-doping on photocatalytic activity of ZnO nanoparticles under visible light irradiation. Materials Letters, 134, 111-114.

[7] Zeng, Y.J., Ye, Z.Z., et al. (2007) Study on the Hall-effect and photoluminescence of N-dope p-type ZnO thin films. Materials Letters, 61, 41-44.

[8] Tuzemen, E.S., Kara, K., Elagoz, S., et al. (2014) Structural and electrical properties of nitrogen-doped ZnO thin films. Applied Surface Science, 28.

[9] Kresse, G. and Hafner, J. (1994) Ab initio molecular dynamics for liquid metals. Physical Review B, 47, 558.

[10] Kresse, G. and Furthermuller, J. (1996) Efficiency of ab-initio total energy calculations using a plane-wave basis set. Physical Review B, 54, 11169.

[11] 陈兰丽 (2011) 高p型导电率氧化锌的设计与计算. 硕士学位论文, 江西科技师范学院, 南昌.

[12] Lee, C.J., Lee, T.J., Lyu, S.C., Zhang, Y., Ruh, H. and Lee, H.J. (2002) Field emission from well aligned zinc oxide nanowires grown at low temperature. Applied Physics Letters, 81, 3648.