Study on the Stable Carbon Isotope of the Mid-Late Devonian Plants from North Xinjiang

作者: 冯 净 , 徐洪河 , 蒋 青 :中国科学院南京地质古生物研究所,现代古生物学与地层学国家重点实验室,南京;

关键词: 有机碳泥盆纪地球化学古气候Organiccarbon Devonian Geochemistry Palaeoclimate

对新疆北部和布克赛尔地区呼吉尔斯特组上段中—晚泥盆世7属9种植物,206个样品开展了植物稳定碳同位素分析,包括草本石松类Haskinsia、Leclercqia,乔木状石松Hoxtolgaya,工蕨类Serrulacaulis,前裸子植物Tetraxylopteris,原始真蕨类Compsocradus,带蕨Taneocrada等,时代跨度从中泥盆世Eifelian期至晚泥盆世Frasnian期。新疆北部泥盆纪陆生植物δ13C值分布范围在−26‰~−19‰之间,与现代C3植物δ13C值分布范围一致。不同类群植物稳定碳同位素组成存在一定的差距,这与植物水分利用效率大小有一定的对应关系。同一植物属种不同器官的δ13C值并不完全相同,δ13C茎轴 > δ13C孢子叶。从Givetian期至Frasnian期,植物δ13C值下降3‰左右,推测与其对应的是CO2浓度的小规模上升,气候变暖。中泥盆世Eifelian期至Givetian期,植物δ13C值并未表现出明显的变化趋势,反映了整个中泥盆世气候可能相对稳定。

Abstract: The stable carbon isotope (δ13C) is analyzed from 206 samples of 7 genera, 9 species of fossil plants from the Upper Member of the Hujiersite Formation, the Hoxtolgay Area, Xinjiang, China, including Haskinsia, Leclercqia, Hoxtolgaya, Serrulacaulis, Tetraxylopteris, Compsocradus, Taneocrada and uncertain roots. The age of these taxa ranges from the early Mid Devonian (Eifelian) to the early Late Devonian (Frasnian). The δ13C value of Devonian plants of North Xinjiang ranges from −26‰ to −19‰, which is similar to that of modern C3 plants. Individual taxon has its own δ13C value range, which is probably a result of different water use efficiency. The δ13C value of different organs of the single plant is not completely same. Normally the δ13C value of the axis is larger than that of sporophyll. From the Givetian to Frasnian, the δ13C value of plants decreases by about 3‰. It is inferred that the decline corresponds to the rise of atmospheric pCO2 and the climate warming. However, the δ13C value of plants rarely changes from Eifelian to Givetian, suggesting the relative stability of the Mid Devonian climate.

文章引用: 冯 净 , 徐洪河 , 蒋 青 (2014) 新疆北部中–晚泥盆世植物稳定碳同位素研究。 植物学研究, 3, 227-237. doi: 10.12677/BR.2014.36029


[1] Scartazza, A., Lauteri, M., Guido, M.C., et al. (1998) Carbon isotope discrimination in leaf and stem sugars, water-use efficiency and mesophyll conductance during different developmental stages in rice subjected to drought. Functional Plant Biology, 25, 489-498.

[2] Saurer, M., Siegenthaler, U. and Schwingruber, F. (1995) The climate—Carbon isotope relationship in tree rings and the significance of site conditions. Tellus B, 47, 320-330.

[3] Long, E.S., Sweitzer, R.A., Diefenbach, D.R., et al. (2005) Controlling for anthropogenically induced atmospheric variation in stable carbon isotope studies. Oecologia, 146, 148-156.

[4] Dawson, T.E., Mambelli, S., Plamboeck, A.H., et al. (2002) Stable isotopes in plant ecology. Annual Review of Ecology and Systematics, 33, 507-559.

[5] Cai, C.-Y. and Wang, Y. (1995) Devonian floras. In: Li, X.-X., Ed., Fossil floras of China through the geological ages, Guangdong Science and Technology, Guangzhou, 28-77.

[6] Xu, H.-H., Marshall, J.E.A., Berry, C.M., et al. (2012) Mid Devonian megaspores from Yunnan and North Xinjiang, China: Their palaeogeographical and palaeoenvironmental significances. Palaeoworld, 21, 11-19.

[7] Xu, H.-H., Marshall, J.E.A., Wang, Y., et al. (2014) Devonian spores from an intra-oceanic volcanic arc, West Junggar (Xinjiang, China) and the age, palaeogeography and tectonic significance of the associated fossil plant beds. Review of Palaeobotany and Palynology, 206, 10-22.

[8] Xu, H.-H., Berry, C.M. and Wang, Y. (2011) Morphological study on the Devonian zosterophyll Serrulacaulis Hueber and Banks: New materials and emendation. Palaeoworld, 20, 322-331.

[9] 蒋青 (2013) 新疆北部中泥盆世晚期前裸子植物研究. 博士论文, 中国科学院南京地质古生物研究所, 南京.

[10] Fu, Q., Wang, Y., Berry, C.M., et al. (2011) Complex Branching Patterns in a Newly Recognized Species of Compsocradus Berry et Stein (Iridopteridales) from the Middle Devonian of North Xinjiang, China. International Journal of Plant Sciences, 172, 707-724.

[11] Xu, H.H., Wang, Y., Berry, C.M. and Cai, C.Y. (2008) Two species of Haskinsia Grierson et Banks (Lycopsida) from the Middle Devonian of Xinjiang, China, and their palaeogeographical considerations. Botanical Journal of the Linnean Society, 157, 633-644.

[12] Xu, H.H., Berry, C.M., Wang, Y. and Marshall, J.E.A. (2011) A new species of Leclercqia Banks, Bonamo et Grierson (Lycopsida) from the Middle Devonian of North Xinjiang, China, with a possible climbing habit. International Journal of Plant Sciences, 172, 836-846.

[13] Xu, H.H., Wang, Y. and Wang, Q. (2012) A new homosporous, arborescent lycopsid from the Middle Devonian of Xinjiang, Northwest China. Palaeontology, 55, 957-966.

[14] Deines, P. (1980) The isotopic composition of reduced organic carbon. In: Fritz, P. and Fontes, J., Eds., Handbook of Environmental Isotope Geochemistry, Vol. 1, Elsevier, Amsterdam, 329-406.

[15] Thomasson, J.R., Nelson, M.E. and Zakrzewski, R.J. (1986) A fossil grass (Gramineae: Chloridoideae) from the Miocene with Kranz anatomy. Science, 233, 876-878.

[16] Brooks, J.R., Flanagan, L.B., Buchmann, N. and Ehleringer, J.R. (1997) Carbon isotope composition of boreal plants: Functional grouping of life forms. Oecologia, 110, 301-311.

[17] Wan, Z.Z. (2012) Stable carbon and nitrogen isotopic studies of Devonian land plants—An indicator of paleoclimate and paleoenvironmental changes. PhD Thesis, University of Cincinnati, Cincinnati.

[18] Benner, R.A., Fogel, M.L., Sprague, E.K. and Hodson, R.E. (1987) Depletion of 13C in lignin and its implications for stable carbon isotope studies. Nature, 329, 708-710.

[19] Brendel, O., Handley, L. and Griffiths, H. (2003) The δ13C of Scots pine (Pinus sylvestris L.) needles: Spatial and temporal variations. Annals of Forest Science, 60, 97-104.

[20] 刘海燕 (2008) 油松稳定碳同位素遗传稳定性及环境影响的研究. 北京林业大学, 北京.

[21] 陈拓, 陈发虎, 安黎哲, 刘晓宏 (2004) 不同海拔祁连园柏树轮和叶片13C值的变化. 冰川冻土, 6, 767-771.

[22] Martinelli, L.A., Almeida, S., Brown, I.F., Moreira, M.Z., Victoria, R.L., Sternberg, L.S.L., et al. (1998) Stable carbon isotope ratio of tree leaves, boles and fine litter in a tropical forest in Rondonia, Brazil. Oecologia, 114, 170-179.

[23] Francey, R.J., Grifford, R.M., Sharkey, T.D. and Weir, B. (1985) Physiological influences on carbon isotope discrimination in huon pine (Lagarostrobos franklinii). Oecologia, 66, 211-218.

[24] Brugnoli, E. and Lauteri, M. (1991) Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes. Plant Physiology, 95, 628-635.

[25] Korol, R., Kirschbaum, M.U., Farquhar, G.D. and Jeffreys, M. (1999) Effects of water status and soil fertility on the C-isotope signature in Pinus radiata. Tree Physiology, 19, 551-562.

[26] Diefendorf, A.F., Mueller, K.E., Wing, S.L., Koch, P.L. and Freeman, K.H. (2010) Global patterns in leaf 13C discrimination and implications for studies of past and future climate. Proceedings of the National Academy of Sciences of the United States of America, 107, 5738-5743.

[27] Kohn, M.J. (2010) Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo) ecology and (paleo) climate. Proceedings of the National Academy of Sciences of the United States of America, 107, 19691-19695.

[28] Beck, C.B. and Wight, D.C. (1988) Progymnosperms. In: Beck, C.B., Ed., Origin and Evolution of Gymnosperms, Columbia University Press, New York, 1-84.

[29] O’Leary, M.H. (1981) Carbon isotope fractionation in plants. Phytochemistry, 20, 553-567.

[30] Van de Water, P.K., Leavitt, S.W. and Betancourt, J.L. (1994) Trends in stomatal density and 13C/12C ratios of Pinus flexilis needles during last glacial-interglacial cycle. Science, 264, 239-243.

[31] Feng, X. and Epstein, S. (1995) Carbon isotopes of trees from arid environments and implications for reconstructing atmospheric CO2 concentration. Geochimica et Cosmochimica Acta, 59, 2599-2608.

[32] Chen, F.H., Rao, Z.G., Zhang, J.W., Jin, M. and Ma, J.Y. (2006) Variations of organic carbon isotopic composition and its environmental significance during the last glacial on western Chinese Loess Plateau. Chinese Science Bulletin, 51, 1593-1602.

[33] Joachimski, M.M., Breisig, S., Buggisch, W., Talent, J.A., Mawson, R., Gereke, M., et al. (2009) Devonian climate and reef evolution: Insights from oxygen isotopes in apatite. Earth and Planetary Science Letters, 284, 599-609.