谢宾斯基垫片上的尺度因子
The Scaling Factor on the Sierpinski Gasket

作者: 唐东磊 , 胡 锐 , 潘新月 , 孙亚萍 :南京审计学院,应用数学系,南京;

关键词: 谢宾斯基垫片尺度因子&Delta-Y 变换The Sierpinski Gasket Scaling Factor &Delta-Y Transform

摘要:
本文将给出关于谢宾斯基垫片上尺度因子计算方法的综述。我们主要介绍等权条件下谢宾斯基垫片尺度因子的两种求法。一是用Δ-Y变换,另外一种则是用经典微积分中关于极值部分的理论。

Abstract: In this paper, we give a statement of the computing method of scaling factor on the Sierpinski gasket. We will introduce two methods in computing the scaling factor under equal-weighted condition. One is by Δ-Y Transformation. The other one is using extreme values in classical calculus theory.

文章引用: 唐东磊 , 胡 锐 , 潘新月 , 孙亚萍 (2014) 谢宾斯基垫片上的尺度因子。 应用数学进展, 3, 201-206. doi: 10.12677/AAM.2014.34029

参考文献

[1] Kigami, J. (1989) A harmonic calculus on the Sierpinski spaces. Japan Journal of Applied Mathematics, 8, 259-290.

[2] Kigami, J. (1993) Harmonic calculus on p.c.f. self-similar sets. Transactions of American Mathematical Society, 335, 721-755.

[3] Kigami, J. (2001) Analysis on fractals. Cambridge University Press, Cam-bridge.

[4] Lindstrøm, T. (1990) Brownian motion on nested fractal. Memory of American Mathematical Society, 420.

[5] Strichartz, R.S. (2000) Taylor approximations on Sierpinski gasket type fractals. Journal of Functional Analysis, 174, 76-127.

[6] Strichartz, R.S. (2006) Differential equations on fractals: A tutorial. Princeton University press, Princeton.

[7] 张永照, 杨万明, 张淑艳 (1995) 电阻形联接与形联接等效变换的简单推导. 大学物理, 3, 18-19.

[8] 过祥龙, 张毓麟 (1997) Sierpinski电阻网络等效电阻的研究. 大学物理, 4, 8-10.

[9] 郭慧丽 (2001) Sierpinski变形电阻网络等效阻值的研究. 甘肃高师学报, 2, 27-28.

[10] 李建新 (2005) 一类n级嵌套的三角形电阻网络的研究. 安阳工学院学报, 13, 58-60.

[11] 孙亚萍 (2011) Δ-Y变换在数学中的应用. 硕士论文, 南京审计学院, 南京.

[12] 潘新月 (2013) 谢宾斯基垫片上尺度因子的求法. 硕士论文, 南京审计学院, 南京.

分享
Top