随机设计核回归估计的矩相合性
Moment Consistency of Kernel Regression Estimation for Random Design

作者: 杨 昕 :桂林航天工业学院数理部,桂林;

关键词: 随机设计&rho&condition=Keywords">&rho 混合样本核回归估计矩相合性Random Design&rho&condition=Keywords"> &rho Mixing Sample Kernel Regression Estimator Moment Consistency

摘要:
对随机设计非参数回归模型,在ρ混合样本下研究Nadaraya-Watson型核回归估计,证明了这种核回归估计的逐点矩相合性和全局矩相合性,所获结果推广了Devroye (1981)的结论。

Abstract: For the nonparametric regression model with random design, we discuss the Nadaraya-Watson type kernel regression estimator for ρ mixing samples, and prove the point moment consistency and the global moment consistency of the kernel regression estimator. The obtained results generalize the Devroye’s (1981) conclusions.

文章引用: 杨 昕 (2014) 随机设计核回归估计的矩相合性。 理论数学, 4, 223-228. doi: 10.12677/PM.2014.46032

参考文献

[1] Nadaraya, E.A. (1964) On estimating regression. Theory of Probability and Its Applications, 9, 141-142.

[2] Nadaraya, E.A. (1965) On non-parametric estimates of density functions and regression curves. Theory of Probability and Its Applications, 10, 186-190.

[3] Watson, G.S. (1964) Smooth regression analysis. Sankhya: The Indian Journal of Statistics, Series A, 26, 359-372.

[4] Devroye, L. (1981) On the almost everywhere convergence of nonparametric regression function estimates. The Annals of Statistics, 9, 1310-1319.

[5] Devroye, L.P. and Wagner, T.J. (1980) Distribution-free consistency results in nonparametric discrimination and regression function estimation. The Annals of Statistics, 8, 231-239.

[6] Greblicki, W., Krzyzak, A. and Pawlak, M. (1984) Distribution-free pointwise consistency of kernel regression estimate. The Annals of Statistics, 12, 1570-1575.

[7] Nze, P.A., Buhlmann, P. and Doukhan, P. (2002) Weak dependence beyond mixing and asymptotics for nonparametric regression. Annals of Statistics, 30, 397-430.

[8] Bradley, R.C. (1990) Equivalent mixing conditions for random fields. Technical Report No. 336, Center for Stochastic Processes, University of North Carolina, Chapel Hill.

[9] Bradley, R.C. (1992) On the spectral density and asymptotic normality of weakly dependent random fields. Journal of Theoretical Probability, 5, 355-374.

[10] 杨善朝 (1998) 一类随机变量部分和的矩不等式及其应用. 科学通报, 17, 1823-1828.

分享
Top