定向凝固Ni-Ni3Si共晶的晶体学择优取向研究
Study on the Preferential Orientation of the Directionally Solidified Ni-Ni3Si Eutectic in Situ Composite

作者: 崔春娟 , 薛 添 , 杨 猛 , 马晓康 :西安建筑科技大学冶金工程学院,西安;

关键词: 定向凝固共晶自生复合材料透射电镜择优取向Directional Solidification Eutectic in Situ Composite Transmission Electron Microscopy Preferential Orientation

摘要:
Ni-Ni3Si共晶自生复合材料是一种具有良好的应用前景的高温结构材料。布里奇曼定向凝固技术是制备Ni-Ni3Si共晶复合材料的先进技术之一。在定向凝固过程中,共晶两相长大方向在某一晶体学方向上是优先的,这种择优取向是由系统自动减小其总界面能所致。本文采用透射电镜研究了定向凝固技术制备的Ni-Ni3Si共晶自生复合材料的显微组织结构和晶体学最优生长方向。研究表明Ni-Ni3Si共晶是具有层片组织的规则共晶组织,规则排列的Ni3Si化合物均匀分布在Ni基体上。其晶体学择优方向[110]Ni//[211] Ni3Si, ( 113)Ni//(113)Ni3Si。

Abstract: The Ni-Ni3Si eutectic in situ composite is a kind of promising high-temperature structural material. Bridgman directional solidification technique is one of the advanced techniques to prepare this material. During directional solidification process, two phases of the eutectic in situ composite grow faster in certain direction. This is caused by the automatic decrease of the total interface energy. In this paper microstructure and preferential orientation of the Ni-Ni3Si eutectic in situ composite are studied by the transmission electron microscopy (TEM). It is found that the Ni-Ni3Si eutectic in situ composite is a kind of regular lamellar eutectic, and the Ni3Si intermetallic is uniformly distributed in the Ni matrix. The preferential orientation of the Ni-Ni3Si eutectic in situ composite prepared by Bridgman directional solidification technique is [110]Ni//[211]Ni3Si, ( 113)Ni//(113)Ni3Si.

Abstract:

文章引用: 崔春娟 , 薛 添 , 杨 猛 , 马晓康 (2014) 定向凝固Ni-Ni3Si共晶的晶体学择优取向研究。 凝聚态物理学进展, 3, 33-38. doi: 10.12677/CMP.2014.33005

参考文献

[1] Liu, C.T., George, E.P. and Oliver, W.C. (1996) Grain-boundary fracture and boron effect in Ni3Si alloys. Intermetallics, 4, 77-83.

[2] Fujita, M., Kaneno, Y. and Takasugi, T. (2008) The effect of second-phase dispersions on mechanical property of Ni3Si based multi-phase intermetallic alloys. Materials Science and Engineering: A, 476, 112-119.

[3] Chang, J.H., Chou, J.M., Hsieh, R.I. and Lee, J.L. (2010) Corrosion behaviour of vacuum induc-tion-melted Ni-based alloy in sulphuric acid. Corrosion Science, 52, 2323-2330.

[4] Takasugi, T. and Yoshida, M. (2001) The effect of Nb addition on microstructure and mechanical properties of Ni3 (Si, Ti) alloys. Journal of Materials Science, 36, 643-651.

[5] Takasugi, T., Kawai, H. and Kaneno, Y. (2002) The effect of Cr addition on mechanical and chemical properties of Ni3Si alloys. Materials Science and Engineering A, 329-331, 446-454.

[6] Kaneno, Y., Wada, M., Inoue, H. and Takasugi, T. (2002) Effects of grain size and temperature on environmental embrittlement of Ni3(Si, Ti) alloys. Autumn Meetings of the Japan Institute of Metals, Nagoya.

[7] Cui, C.J., Zhang, J., Wu, K., Ma, Y.P., Liu, L. and Fu, H.Z. (2012) Microstructure and properties of Ni-Ni3Si composites by directional solidification. Physica B: Condensed Matter, 407, 3566-3569.

[8] Cui, C.J., Zhang, J., Wu, K., Zou, D.N., Ma, Y.P., Liu, L. and Fu, H.Z. (2013) Directional solidification of Ni-Ni3Si eutectic in situ composites by electron beam floating zone melting. Physica B: Condensed Matter, 412, 70-73.

[9] 胡汉起 ( 2000) 金属凝固原理. 机械工业出版社, 北京.

[10] 崔春娟, 张军, 吴昆, 邹德宁, 马幼平, 刘林, 傅恒志 (2012) Ni-Ni3Si共晶合金的定向生长特性. 稀有金属材料与工程, 41, 650-653.

[11] 宋宝来 (2008) Carine软件在电子衍射花样标定中的应用及拓展. 铸造技术, 10, 1411-1413.

[12] Cantor, B. (1976) Interphase interfaces. In: Grain Boundary Structure and Properties, Academic Press, London.

分享
Top