异戊二烯在大气光化学过程中的能量作用
Isoprene and Its Energy Role in the Atmospheric Photochemical Processes

作者: 白建辉 :中国科学院大气物理研究所中层大气与全球环境探测开放实验室,北京;

关键词: 光化学反应光化学因子散射因子UV能量利用Photochemical Reaction Photochemical Factor Scattering Factor UV Energy Utilization

摘要:
2002年夏季在内蒙古草原进行了太阳辐射、异戊二烯排放的综合观测,根据紫外辐射(UV)的传输规律以及对观测数据的统计分析,发展了实际天气条件下UV的经验模型,该模型考虑了影响UV的异戊二烯、光化学、散射等因子的能量作用,对地面和大气顶的UV均有较好的模拟。对数据的统计分析发现,实际天气条件下异戊二烯与UV之间的关系表现为负的能量关系,其揭示的机制是异戊二烯对UV能量的利用,即异戊二烯利用了其他具有UV吸收物质中的能量,进而参与大气中的化学和光化学反应。在冠层尺度上,异戊二烯与PAR也表现出负的能量关系。敏感性分析表明,实际天气条件下,UV对于异戊二烯的变化最敏感,其次是光化学因子、散射因子,这揭示了内蒙古草原实际天气条件下,异戊二烯及其光化学产物等的变化将引起UV最大的变化。内蒙古草原散射辐射与总辐射之比为0.32,表明其大气中的物质含量相对较低。

Abstract: The integrated measurements of solar radiation and isoprene emission were carried out at the Inner Mongolia Grassland during the summer season in 2002. Based on the principles of solar UV transmission and the statistical analysis on the observation data, an empirical model for calculating UV under all sky conditions was developed. This model considers the energy roles of isoprene, photochemical and scattering factors, shows reasonable results for UV at the ground and the top of the atmosphere. Based on the statistical analysis of observation data, it is found that isoprene and UV exhibit a negative energy relationship under all sky conditions, which implies the mechanism of isoprene utilizing UV energy, i.e., isoprene utilizes the energy from the substances that have direct UV absorption, then takes part in chemical and photochemical reactions in the atmosphere. Isoprene and PAR (Photosynthetically Active Radiation) also exhibit a negative energy relationship on a canopy level. The sensitivity test shows that UV is more sensitive to isoprene factor, then photochemical factor, and scattering factor, under all sky conditions. It implies that the variation of isoprene and its oxidation products would cause the biggest change of UV at the Inner Mongolia grassland under all sky conditions. The ratio of solar scattering radiation to solar global radiation is 0.32, which means the total substances in the atmospheric column are in relatively low level at the Inner Mongolia grassland.

文章引用: 白建辉 (2014) 异戊二烯在大气光化学过程中的能量作用。 地球科学前沿, 4, 319-334. doi: 10.12677/AG.2014.45039

参考文献

[1] Brasseur, G.P., Orlando, J.J. and Tyndall, G.S. (1999) Atmospheric chemistry and globe change. Oxford University Press, Oxford, 335-337.

[2] Guenther, A., Hewitt, C.N., Erickson, D., et al. (1995) A global model of natural volatile organic compound emissions. Journal of Geophysical Research, 100, 8873-8892.

[3] 白建辉, 王庚辰 (1995) 大气中的水汽对太阳紫外辐射消光的可能机制分析. 大气科学, 19, 380-384.

[4] Bai, J.H. (2009) UV attenuation in the cloudy atmosphere. Journal of Atmospheric Chemistry, 62, 211-228.

[5] Bai, J.H. (2011) Analysis of ultraviolet radiation in clear skies in Beijing and its affecting factors. Atmospheric Environment, 45, 6930-6937.

[6] 白建辉 (2010) 以能量方法研究紫外辐射在大气中的传输. 环境科学学报, 30, 702-713.

[7] 邓雪娇, 周秀骥, 吴兑等 (2010) 广州地区光化辐射通量与辐照度的特征. 中国环境科学, 30, 893-899.

[8] 白建辉 (2010) 华北地区紫外与可见光辐射在大气中的传输. 环境科学学报, 30, 915-925.

[9] 白建辉 (2013) 北京晴天紫外辐射的传输、损失及其长期变化. 环境科学学报, 33, 1347-1354.

[10] 白建辉, 王庚辰, 任丽新等 (2003) 内蒙古草原挥发性有机物排放通量的研究. 环境科学, 24, 16-22.

[11] 姜恕 (1985) 中国科学院内蒙古生态草原系统定位站的建立和研究工作概述. 草原生态系统研究(第1集), 科学出版社, 北京, 1-11.

[12] 白建辉 and Baker, B. (2004) 草地异戊二烯排放通量影响因子的研究. 大气科学, 5, 783-794.

[13] Bai, J.H. (2009) UV attenuation in the cloudy at-mosphere. Journal of Atmospheric Chemistry, 62, 211-228.

[14] Kirstine, W., Galbally, I., Ye, Y. and Hooper, M. (1998) Emissions of volatile organic compounds (primarily oxygenated species) from pasture. Journal of Geophysical Research: Atmospheres, 103, 10605-10619.

[15] 白建辉 and Baker, B. (2004) 热带人工橡胶林异戊二烯排放通量的模式研究. 环境科学学报, 2, 197-203.

[16] Chadyšiene, R. and Girgždys, A. (2008) Ultraviolet radiation albedo of natural surface. Journal of Environmental Engineering and Landscape Management, 16, 83-88.

[17] Harley, P., Deem, G., Flint, S. and Caldwell, M. (1996) Effects of growth under elevated UV-B on photosynthesis and isoprene emission in Quercus gambelii and Mucuna pruriens. Global Change in Biosphere, 2, 101-106.

[18] Carlton, A.G., Wiedinmyer, C. and Kroll, J.H. (2009) A review of Secondary Organic Aerosol (SOA) formation from isoprene. At-mospheric Chemistry and Physics, 9, 4987-5005.

[19] Goldstein, A. and Galbally, I.E. (2007) Known and unexplored organic constituents in the Earth’s atmosphere. Environmental Science & Technology, 41, 1514-1521.

[20] Carlo, P.D., Brune, W.H., Martinez, M., Harder, H., Lesher, R., Ren, X.R., Thornberry, T., Carroll, M.A., Young, V., Shepson, P.B., Riemer, D., Apel, E. and Campbell, C. (2004) Missing OH reactivity in a forest: Evidence for unknown reactive biogenic VOCs. Science, 304, 722-725.

[21] James, D.L., Jennifer, C.Y., Read, K.A., Hamilton, J.F., Hopkins, J.R., Lewis, A.C., Bandy, B.J., Davey, J., Edwards, P.E., Ingham, T., Self, D.E., Smith, S.C., Pilling, M.J. and Heard, D.E. (2009) Measurement and calculation of OH reactivity at a United Kingdom coastal site. Journal of Atmospheric Chemistry, 64, 53-76.

[22] Claeys, M., Graham, B., Vas, G., Wang, W., Vermeylen, R., Pashynska, V., Cafmeyer, J., Guyon, P., Andreae, M.O., Artaxo, P. and Maenhaut, W. (2004) Formation of secondary organic aerosols through photooxidation of isoprene. Sci- ence, 303, 1173-1176.

[23] 白建辉, 王明星, 陈辉, 徐永福, 石立庆, 孔国辉, 黄忠良, 孟泽 (2002) 地面臭氧的变化规律和计算方法的初步研究I. 紫外波段. 气候与环境研究, 1, 49-60.

[24] 白建辉, 徐永福, 陈辉, 王庚辰, 石立庆, 孟泽, 黄忠良, 孔国辉 (2003) 鼎湖山森林地区臭氧及其前体物的变化特征和分析. 气候与环境研究, 3, 370-380.

[25] Bai, J.H. (2013) Photosynthetically active radiation loss in the atmosphere in North China. Atmospheric Pollution Research, 4, 411-419.

[26] Bai, J.H. (2010) Study on surface O3 chemistry and photochemistry by UV energy conservation. Atmospheric Pollution Research, 1, 118-127.

分享
Top