基于多重工作假说的水文模拟理论与框架
Theory and Framework of Hydrological Modeling Based on Multiple Working Hypotheses

作者: 林凯荣 , 胡 杨 :中山大学水资源与环境系,广州;

关键词: 水文模拟多重工作假说变化环境不确定性Hydrological Modeling Multiple Working Hypotheses Changing Environment Uncertainty

摘要:
由于环境系统本身的复杂性,加上气候变化以及人类活动的影响,使得现有的水文模型在模拟和预测自然过程中存在很大的不确定性,这在一定程度上限制了模拟与预报结果的可靠性和实用价值。针对这个问题,本文提出了建立基于组件技术的模块化流域水文模型,结合研究流域的气候和下垫面信息,确定可供选择的相对合理的假说模型和参数;运用每个假说模型进行模拟试验;同时建立基于贝叶斯理论的流域水文模拟多重因子评价诊断方法进行模型假说检验的基于多重工作假说的水文模拟框架。这对于完善水文预报理论、改善预报精度以及为防洪调度提供科学的决策依据,具有重要的理论意义和实际应用价值。

Abstract: Due to complexity of environment system and impact of climate change and human activity, there are many uncertainties in hydrological modeling and forecasting, which affect the reliability and practicability of the simulation and prediction results to some degree. To solve this problem, a framework of hydrological modeling based on multiple working hypotheses was presented, in-cluding developing a hydrological model based on CORBA (Common Object Request Broker Archi-tecture), to provide more alterative model hypotheses and parameter based on characteristics of climate and underlying in study basin, for model hypothesis testing; and establishing a multi-fac- tors diagnostic approach based on Bayesian theory for model evaluation. Multiple working hypo-theses for hydrological modeling will benefit the improvement of the hydrological forecasting theory and accuracy, and provide the scientific decision for flood control and operation.

文章引用: 林凯荣 , 胡 杨 (2014) 基于多重工作假说的水文模拟理论与框架。 水资源研究, 3, 395-403. doi: 10.12677/JWRR.2014.35048

参考文献

[1] ANDRASSIAN, V., LERAT, J., LOUMAGNE, C., MATHEVET, T., MICHEL, C., OUDIN, L. and PERRIN, C. What is really undermining hydrologic science today? Hydrological Processes, 2007, 21(20):2819-2822.

[2] 杨大文, 夏军, 张建云. 中国PUB 研究与发展. 水问题的复杂性与不确定性研究与进展[M]. 北京: 中国水利水电出版社, 2004. YANG Dawen, XIA Jun and ZHANG Jianyun. PUB research and development in China. The complexity and uncer-tainty of water issues research and development. Beijing: China Water Power Press, 2004. (in Chinese)

[3] 陆桂华, 吴娟, 吴志勇. 水文集合预报试验及其研究进展[J]. 水科学进展, 2012, 23(5): 728-734. LU Guihua, WU Juan and WU Zhiyong. Advances in hydrologic ensemble prediction experiment. Advances in Water Science, 2012, 23(5): 728-734. (in Chinese)

[4] 徐宗学, 程磊. 分布式水文模型研究与应用进展[J]. 水利学报, 2010, 41(9): 1009-1017. XU Zongxue, CHENG Lei. Progress on studies and applications of the Distributed Hydrological Models. Journal of Hydraulic Engineering, 2010, 41(9): 1009-1017. (in Chinese)

[5] BORMANN, H., DIEKKRUGER, B. Possibilities and limitations of regional hydrological models applied within an environmental change study in Benin (West Africa). Physics and Chemistry of the Earth, Parts A/B/C, 2003, 28(33-36): 1323-1332.

[6] SINGH, V. P., WOOLHISER, D. A. Mathematical modeling of watershed hydrology. Journal of Hydrologic Engineering, 2002, 7(4): 270-292.

[7] BEVEN, K. J., BINLEY, A. The future of distributed models, model calibration and uncertainty predic-tion. Hydrological Processes, 1992, 6(3): 279-298.

[8] 莫兴国, 刘苏峡. GLUE方法及其在水文不确定性分析中的应用. 水问题的复杂性和不确定性研究与进展[M]. 北京: 中国水利水电出版社, 2004. MO Xingguo, LIU Suxia. The GLUE method and its application in hydrological uncertainty analysis. The complexity and uncertainty of water issues research and development. Beijing: China Water Power Press, 2004. (in Chinese)

[9] 刘艳丽, 梁国华, 周惠成. 水文模型不确定性分析的多准则似然判据GLUE方法[J]. 四川大学学报(工程科学版), 2009, 41(4): 89-96. LIU Yanli, LIANG Guohua and ZHOU Huicheng. Uncertainty analysis of hydrological model using multi-criteria li-kelihood measure within the GLUE Framework. Journal of Sichuan University (Engineering Science Edition), 2009, 41(4): 89-96. (in Chinese)

[10] 林凯荣, 陈晓宏, 江涛. 基于Copula-Glue的水文模型参数不确定性研究[J].中山大学学报(自然科学版), 2009, 48(3): 109-115. LIN Kairong, CHEN Xiaohong and JIANG Tao. Parameter uncertainty in hydrological model based on Copula and Glue. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2009, 48(3): 109-115. (in Chinese)

[11] MANTOVAN, P., TODINI, E. Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology. Journal of Hydrology, 2006, 330(1-2): 368-381.

[12] BEVEN, K., SMITH, P. and FREER, J. Comment on “Hydrological fore-casting uncertainty assessment: Incoherence of the GLUE methodology” by Pietro Mantovan and Ezio Todini. Journal of Hydrology, 2007, 338(3-4): 315-318.

[13] KUCZERA, G., PARENT, E. Monte Carlo assessment of parameter uncertainty in conceptual catchment models: The Metropolis algorithm. Journal of Hydrology, 1998, 211(1-4): 69-85.

[14] BLASONE, R. S., Vrugt, J. A., MADSEN, H., ROSBJERG, D., ROBINSON, B. A. and ZYVOLOSKI, G. A. Generalized likelihood uncertainty estimation (GLUE) using adaptive Markov chain Monte Car lo sampling. Advances in Water Resources, 2008, 31(4): 630-648.

[15] WASSERMAN, L. Bayesian model selection and model averaging. Journal of Mathematical Psychology, 2000, 44(1): 92-107.

[16] 梁忠民, 李彬权, 余钟波, 华家鹏, 刘金涛. 基于贝叶斯理论的TOPMODEL参数不确定性分析. 河海大学学报(自然科学版), 2009, 37(2): 129-132. LIANG Zhongmin, LI Binquan, YU Zhongbo, HUA Jiapeng and LIU Jintao. Parametric uncertainty analysis for TOPMODEL based on Bayesian theory. Journal of Hohai University (Natural Sciences), 2009, 37(2): 129-132. (in Chinese)

[17] 董磊华, 熊立华, 万民. 基于贝叶斯模型加权平均方法的水文模型不确定性分析[J]. 水利学报, 2011, 42(9): 1065-1074. DONG Leihua, XIONG Lihua and WAN Min. Uncertainty analysis of hydrological modeling using the Bayesian Model Averaging Method. Journal of Hydraulic Engineering, 2011, 42(9): 1065-1074. (in Chinese)

[18] THIEMANN, M., TROSSET, M., GUPTA, H. and SOROOSHIAN, S. Bayesian recursive parameter estimation for hydrological models. Water Resources Research, 2001, 7(10): 21-35.

[19] VRUGT, J. A., GUPTA, H. V., BOUTEN, W. and SOROOSHIAN, S. A shuffled complex evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resources Research, 2003, 39(8): 1-16.

[20] BUTTS, M. B., PAYNE, J. T. and KRISTENSEN, H. An evaluation of the impact of model structure on hydrological modeling uncertainty for streamflow simulation. Journal of Hydrology, 2004, 298(1-4): 242-266.

[21] WAGENER, T., MCINTYRE, N., LEES, M. J., WHEATER, H. S. and GUPTA, H. V. Towards reduced uncertainty in conceptual rainfall-runoff modeling: Dynamic identifiability analysis. Hydrological Processes, 2003, 17(2): 455-476.

[22] MONTANARI, A., BRATH, A. A sto-chastic approach for assessing the uncertainty of rainfall-runoff simulations. Water Resources Research, 2004, 40(1): W01106.

[23] VAN GRIENSVEN, A., MEIXNER, T. Methods to quantify and identify the sources of uncertainty for river basin water quality models. Water Science and Technology, 2006, 53(1): 51-59.

[24] 梁忠民, 戴荣, 李彬权. 基于贝叶斯理论的水文不确定性分析研究进展. 水科学进展, 2011, 21(2): 274-281. LINAG Zhongmin, DAI Rong and LI Binquan. A review of hydrological uncertainty analysis based on Bayesian theory. Advances in Water Science, 2011, 21(2): 274-281. (in Chinese)

[25] CLARK, M. P., SLATER, A. G., RUPP, D. E., WOODS, R. A., VRUGT, J. A., GUPTA, H. V., WAGENER, T. and HAY, L. E. Framework for Understanding Structural Errors (FUSE): A modular framework to diagnose differences between hydrological models. Water Resources Research, 2008, 44(12): W00B02.

[26] CLARK, M. P., KAVETSKI, D. and FENICIA, F. Pursuing the method of multiple working hypotheses for hydrological modeling. Water Resources Research, 2011, 47(9): W09301.

[27] GOODMAN, D. Extrapolation in risk assessment: Improving the quantification of uncertainty, and improving information to reduce the uncertainty. Human and Ecological Risk Assessment, 2002, 8(1): 177-192.

[28] GUPTA, V. K., SOROOSHIAN, S. The relationship between data and the precision of estimate para-meters. Journal of Hydrology, 1985, 81(1-2): 55-77.

[29] UHLENBROOK, S., SIEBER, A. On the value of experi-mental data to reduce the prediction uncertainty of a process-oriented catchment model. Environmental Modelling and Software, 2005, 20(1): 19-32.

[30] CHOI, H. T., BEVEN, K. Multi-period and multi-criteria model conditioning to reduce prediction uncertainty in an application of TOPMODEL within the GLUE framework. Journal of Hydrology, 2007, 332(3-4): 316-336.

[31] GALLART, F., LATRON, J., LLORENS, P. and BEVEN, K. Using internal catchment information to reduce the uncertainty of discharge and baseflow predictions. Advances in Water Resources, 2007, 30(4): 808-823.

[32] SCHMITTNER, A., URBAN, N. M., KELLER, K. and MATTHEWS, D. Using tracer observations to reduce the uncertainty of ocean diapycnal mixing and climate-carbon cycle projections. Global Biogeochemical Cycles, 2009, 23(4): 19-32.

[33] MASCHIO, C., SCHIOZER, D. J., MOURA, M. A. B. and BECERRA, G. G. A methodology to reduce uncertainty constrained to observed data. SPE Reservoir Evaluation and Engineering, 2009, 12(1): 167-180.

[34] KARASAKI, K., ITO, K., WU, Y. S., SHIMO, M., SAWADA, A., MAEKAWA, K. and HATANAKA, K. Uncertainty reduction of hydrologic models using data from surface-based investigation. Journal of Hydrology, 2011, 403(1-2): 49-57.

[35] 林凯荣, 陈晓宏. 基于FCM-SCEMUA的水文模型参数不确定性估计方法. 水利学报, 2010, 41(10): 1186-1192. LIN Kairong, CHEN Xiaohong. Uncertainty estimation of the hydrological model based on FCM and SCEMUA. Journal of hydraulic engineering, 2010, 41(10): 1186-1192. (in Chinese)

[36] LIN, K. R., LIU, P., HE, Y. H. and GUO, S. L. Multi-site evaluation to reduce parameter uncertainty in a conceptual hydrological modeling within the GLUE framework. Journal of Hydroinformatics, 2014, 16(1): 60-73.

[37] LIN, K. R., LIAN, Y. Q. and HE, Y. H. Effect of Baseflow Separation on Uncertainty of Hydrological Modeling in the Xinanjiang Model. Mathematical Problems in Engineering, 2014, 2014: Article ID: 985054.

[38] FEYEN, L., KALAS, M. and VRUGT, J. A. Semi-distributed parameter optimization and uncertainty assessment for large-scale streamflow simulation using global optimization. Hydrological Sciences Journal, 2008, 53(2): 293-308.

[39] 卫晓婧, 熊立华, 万民等. 融合马尔科夫链-蒙特卡洛算法的改进通用似然不确定性估计方法在流域水文模型中的应用. 水利学报, 2009, 40(4): 464-473. WEI Xiaojing, XIONG Lihua, WAN Min, et al. Application of Markov Chain Monte Carlo method based modified generalized likelihood uncertainty estimation to hydrological models. Journal of Hydraulic Engineering, 2009, 40(4): 464-473. (in Chinese)

[40] CHAMBERLIN, T. C. The method of multiple working hypotheses. Science (Old Series), 1890, 15: 92.

[41] BEVEN, K. J., SMITH, P. J., WESTERBERG, I. K. and FREER, J. Comment on “Pursuing the method of multiple working hypotheses for hydrological modeling” by P. Clark et al. Water Resources Research, 2012, 48(11): W09301.

[42] CLARK, M. P., KAVETSKI, D. and FENICIA, F. Reply to comment by K. Beven et al. on “Pursuing the method of multiple working hypotheses for hydrological modeling”. Water Resources Research, 2012, 48(11): W11802.

分享
Top