潘口水库汛期水位动态控制研究
Dynamic Control of Pankou Reservoir Water Level during Flood Season

作者: 尹家波 :武汉大学水资源与水电工程科学国家重点实验室,武汉; 刘 松 , 胡永光 , 董付强 , 宋 强 :丹江口水利枢纽管理局,丹江口;

关键词: 汛限水位预报预泄风险分析数值解法动态控制潘口水库Flood Control Level Forecasting and Pre-Discharge Risk Analysis Numerical Solution Dynamic Control Pankou Reservoir

摘要:
潘口水库从规划设计到建成发电,防洪任务多次变更。目前设计的汛限水位较低,造成汛期雨洪资源的浪费,导致水库在汛后不能蓄水到正常蓄水位,影响了兴利效益。本文建立了汛期水位动态控制模型,包括汛限水位寻优模块、预报预泄法分析模块和风险分析模块。在汛限水位寻优模块中,通过改进的龙格–库塔(Runge-Kutta)数值解法进行调洪演算,结果表明水库主汛期的汛限水位可以由原来的347.6 m提高至350.9 m。采用预报预泄法分析模块和风险分析模块,考虑6 h洪水预报信息,计算求得潘口水库的汛限水位动态控制约束域为350.9 m~351.5 m。实现潘口水库汛期水位动态控制,可以显著地提高综合利用效益。

Abstract: The determination of dynamic control domain of reservoir water level during flood season is one of the important issues for both reservoir operation and water conservancy. The flood control task and operation rule of Pankou reservoir has been changed several times, which leads to low flood control water level and waste water resources during flood season. According to current reservoir operation rules, the flood control water level is derived by the Runge-Kutta numerical solution method. It is shown that the flood control water level during main flood season can be increased from 347.6 m to 350.9 m without reducing flood prevention standards. Based on 6 h flow fore-casting information and pre-discharge operation, the interval of dynamic control water level is es-timated and ranges from 350.9 m - 351.5 m subjected to the constraints without increasing flood control risks. The dynamic control of water level during flood season can significantly increase comprehensive benefits of the Pankou reservoir.

文章引用: 尹家波 , 刘 松 , 胡永光 , 董付强 , 宋 强 (2014) 潘口水库汛期水位动态控制研究。 水资源研究, 3, 386-394. doi: 10.12677/JWRR.2014.35047

参考文献

[1] 中华人民共和国水利部. 水利水电工程设计洪水计算规范(SL-2006)[S]. 北京: 中国水利水电出版社, 2006. Ministry of Water Conservancy of the People’s Republic of China. Regulation for calculating design flood of water resources and hydropower projects (SL 2006). Beijing: China Water Resources & Hydropower Press, 2006. (in Chi-nese)

[2] 刘攀, 郭生练, 王才君等. 水库汛限水位实时动态控制模型研究[J]. 水力发电, 2005, 31(1): 8-11. LIU Pan, GUO Shenglian, WANG Caijun, et al. Real-time dynamic control model for reservoir flood limit water level operation. Water Power, 2005, 31(1): 8-11. (in Chinese)

[3] 邱瑞田, 王本德, 周惠成. 水库汛期限制水位控制理念与观念的更新探讨[J]. 水科学进展, 2004, 15(1): 68-72. QIU Ruitian, WANG Bende and ZHOU Huicheng. New idea for controlling the limited elevation of reservoirs in the flood season. Advances in Water Science, 2004, 15(1): 68-72. (in Chinese)

[4] 郭生练, 李响, 刘心愿等. 三峡水库汛限水位动态控制关键技术研究[M]. 北京: 中国水利水电出版社, 2011. GUO Shenglian, LI Xiang, LIU Xinyuan, et al. Study on key technique of dynamic control of flood limited water level in Three Gorges Reservoir. Beijing: China Water Power Press, 2011. (in Chinese)

[5] 李玮, 郭生练, 刘攀等. 水库汛限水位动态控制方法研究及其应用[J]. 水力发电, 2006, 32(3): 8-12. LI Wei, GUO Shenglian, LIU Pan, et al. A reservoir dynamic flood limited water level control method based on real-time forecasting information. Water Power, 2006, 32(3): 8-12. (in Chinese)

[6] 刘攀, 郭生练, 李响等. 基于风险分析确定水库汛限水位动态控制约束域研究[J]. 水文, 2009, 29(4): 1-5. LIU Pan, GUO Shenglian, LI Xiang, et al. Deriving the interval of reservoir dynamic flood control water level based on risk analysis. Journal of China Hydrology, 2009, 29(4): 1-5. (in Chinese)

[7] 陈炯宏, 郭生练, 刘攀等. 汛限水位动态控制的防洪极限风险分析[J]. 南水北调与水利科技, 2008, 5(6): 38-40, 59. CHEN Jionghong, GUO Shenglian, LIU Pan, et al. Extreme risk analysis of flood season limited water level. South-to- North Water Transfers and Water Science & Technology, 2008, 5(6): 38-40, 59. (in Chinese)

[8] 梁犁丽, 袁林山, 胡宇丰等. 潘口水库调蓄作用对黄龙滩大坝的防洪安全影响[J]. 水电能源科学, 2003, 31(3): 58-61, 231. LIANG Lili, YUAN Linshan, HU Yufeng, et al. Impact of Pankou reservoir operation on flood control safety of Hua-nglongtan dam. 2003, 31(3): 58-61, 231. (in Chinese)

[9] 王国利, 梁国华, 王本德等. 基于预报信息和泄流能力约束的库水位动态控制方法与应用[J]. 水力发电学报, 2010, 29(4): 28-31, 38. WANG Guoli, LIANG Guohua, WANG Bende, et al. Dynamic operation of reservoir normal elevation based on rainfall forecast and constrained pre-discharge capacity and its application. Journal of Hydroelectric Engineering, 2010, 29(4): 28-31, 38. (in Chinese)

分享
Top