具有氧缺陷的SrTiO3的电子结构和光学性质的第一性原理研究
Electronic Structures and Optical Properties of the Oxygen-Deficient SrTiO3 from First-Principles Calculation

作者: 陈清源 , 何 垚 :云南大学物理科学技术学院,昆明;

关键词: 第一性原理计算SrTiO3缺陷电子结构光学性质First-Principles Calculation SrTiO3 Defect Electronic Structure Optical Properties

摘要:
近年来,钙钛矿型氧化物由于其具有独特的结构以及丰富的物理化学性质而受到广泛的关注。SrTiO3(以下简称STO)是一种典型钙钛矿型氧化物,具有典型钙钛矿结构所具有的特点,并且其较高的介电常数、低介电损耗及良好的热稳定性使其备受关注。本文针对其结构特性及光学性质运用了第一性原理进行了研究,发现运用LDA + U方法能够更准确地描述其电子结构,获得与实验值更加吻合的禁带宽度。在这基础上,我们能够准确地预言,通过氧缺陷能够引入缺陷态,并在吸收谱中引入新的吸收带,实现对可见光的有效利用。

Abstract: In recent years, perovskite oxides attracted widely attention due to its unique structure and the chemical and physical properties. SrTiO3 (hereinafter referred to STO) is a kind of typical perovskite oxides. It has the characteristics of typical perovskite structure, and its high dielectric constant, low dielectric loss and good thermal stability made it easier to attract more attentions. In this paper, we investigate the electronic and optical properties of STO using LDA + U method. We found that this method predicts more accurate band gap for STO. The oxygen vacancy induced local defect state and new absorption band, which enhanced the efficiency of absorption in the visible region.

文章引用: 陈清源 , 何 垚 (2014) 具有氧缺陷的SrTiO3的电子结构和光学性质的第一性原理研究。 现代物理, 4, 113-121. doi: 10.12677/MP.2014.45014

参考文献

[1] T. Tanaka, K. Matsunaga, Y. Ikuhara, et al. (2003) First-principles study on structures and energetics of intrinsic va-cancies in SrTiO3. Physical Review B, 68, Article ID: 205213.

[2] Van Benthem, K., Elsasser, C., French, R. (2001) Bulk electronic structure of SrTiO3: Experiment and theory. Journal of Applied Physics, 90, 6156.

[3] Kresse, G. and Furthmuler, J. (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54, 11169-11186.

[4] Kresse, G., Furthmuler, J. (1996) Efficiency of ab-initio total energy calcu-lations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 6, 15-50.

[5] Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865-3868.

[6] Anisimov, V., Zaanen, J. and Andersen, O. (1991) Band Theory and Mott Insulators: Hubbard U instead of Stoner I. Physical Review B, 44, 943-954.

[7] Dudarev, S.L., Botton, G.A., Savrasov, S.Y., et al. (1998) Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study. Physical Review B, 57, 1505.

[8] An, H.-S., Cuong, D.D., Lee, J.C. et al. (2006) LDA+U Study on Fully Relaxed LaTiO3 and (SrTiO3)m(LaTiO3)n Superlattice Structures. Journal of the Korean Physical Society, 49, 1536-1542.

[9] Kowalczyk, S., McFeely, F., Ley, L., et al. (1977) The electronic structure of SrTiO3 and some simple related oxides (MgO, A12O3, SrO, TiO2). Solid State Communications, 23, 161-169.

[10] Battye, F., Höchst, H. and Goldmann, A. (1976) Photoelectron studies of the BaTiO3 and SrTiO3 valence states. Solid State Communications, 19, 269-271.

[11] Luo, W., Duan, W., Louie, S., et al. (2004) Structural and electronic properties of n-doped and p-doped SrTiO3. Physical Review B, 70, Article ID: 214109.

[12] Guo, X., Chen, X., Sun, Y., et al. (2003) Electronic band structure of Nb doped SrTiO3 from first principles calculation. Physics Letters A, 317, 501-506.

[13] 徐新发, 邵晓红 (2009) Y掺杂SrTiO:晶体材料的电子结构计算. 物理学报, 3, 1908-1916.

[14] 赵庆勋, 温梦仙, 王书彪, 等 (2009) BiFeO3及Bi2FeCrO6的电子结构和光学特性. 人工晶体学报, 37, 6.

[15] 李沛娟, 周薇薇, 唐元昊, 等 (2010) CeO2的电子结构, 光学和晶格动力学性质第一性原理研究. 物理学报, 59, 5.

[16] 王渊旭, 王春雷, 钟维烈, 等 (2003) SrHfO3和SrTiO3光学特性的第一性原理研究. 物理学报, 53, 1000-3290.

[17] Zhong, Z.C. and Kelly, P.J. (2008) Electronic-structure induced reconstruction and magnetic ordering at the LaAlO3/SrTiO3 interface. EPL, 84, 27001.

[18] Servoin, J.L., Lupsin, Y. and Gervais, F. (1980) Infrared dispersion in SrTiO3 at high temperature. Physical Review B, 22, 5501.

分享
Top