酢浆草种子弹力传播机制初探
The Seeds Elastic Transmission Mechanism in Oxalis corniculata L.

作者: 张自生 , 文慧慧 , 张仕林 , 张继太 , 樊 瑛 , 陈明林 :安徽师范大学生命科学学院,芜湖;

关键词: 石蜡切片泡状细胞种子质量传播距离反弹机制Paraffin Section Bulliform Cell Seed Quality Ejection Distance Rebound Mechanism

摘要:
酢浆草(Oxalis corniculata L.)在幼嫩和成熟弹射后两个生理时期果实组织切片,并观察不同生理时期果实特征和野外测量酢浆草种子梯度弹射距离。结果表明:酢浆草的果皮在果实成熟阶段背缝线处已裂开,对种子的弹力传播作用不大。假种皮主要由泡状细胞组成,成熟过程中泡状细胞失水收缩严重,细胞间收缩不平衡产生扭转力并随着成熟过程逐渐积聚,当超过临界点后在种子尖端处裂开并翻卷,将种子以反弹形式斜抛出去。假种皮是酢浆草种子弹力传播的关键结构。种子质量与弹射关系图表明弹射距离越远,种子质量越大,且干重时比鲜重时关系更加明显,种子密度分布随传播距离增大先增后减。

Abstract: The fruits of Oxalis corniculata L. were made into tissue sections respectively in their tender and mature period with paraffin method and they were observed to make the features in different physiological period. Besides, the ejecting distance was also measured. The results are as follows: The dorsal suture has been dehisced in ripening stage, so it scarcely contributes to seed transmis-sion by ejecting. Yet, aril is made up with bulliform cell, due to bulliform cell lost water severely in ripe period, tension is produced and accumulated gradually because of intercellular contracting balance. Also, the tip of seed would dehisce and turn up and the seeds would be tossed out by re-bounding when the tension beyond its critical point. Overall, aril is critical structure in seed transmission by rebounding. As chart shows ejecting distance is in direct proportion to fresh seed quality and the relationship is more obvious when dry seed is used. In addition, the density of seeds first increased and then decreased with increase of spreading distance.

文章引用: 张自生 , 文慧慧 , 张仕林 , 张继太 , 樊 瑛 , 陈明林 (2014) 酢浆草种子弹力传播机制初探。 植物学研究, 3, 200-206. doi: 10.12677/BR.2014.35026

参考文献

[1] Lourteig, A. (1983) Flora ilustrada Catarinense, Oxalid ceas Itaja, Sata Catarina. Brazil Herbario Barbosa Rodri-guez.

[2] Rosen Feldt, S. and Galati, B.G. (2005) Ubisch bodies and pollen ontogeny in Oxalis articulata Savigny. Biocell, 29, 271-278.

[3] 徐朗然, 黄成就 (1998) 中国植物志第四十三卷第一分册. 科学出版社, 北京.

[4] 沈显生, 孙灏 (2003) 中国酢浆草属一新种. 云南植物研究, 1, 39-40.

[5] 中国科学院植物研究所 (1980) 中国高等植物图鉴第2册. 科学出版社, 北京.

[6] Li, Y.H. (1964) Examining methods for weed seeds. Plant Protection, 5, 201-203.

[7] 丁良, 李静, 杨慧等 (2010) 酢浆草的研究概况. 医学研究与教育, 3, 77-79.

[8] 张萌, 王俊丽 (2012) 酢浆草研究进展. 黑龙江农业科学, 8, 150-155.

[9] 肖英华, 谢慧, 熊丽等 (1991) 酢浆草的形态组织鉴定. 中药材, 11, 562-564.

[10] 旷野 (2002) 半之莲、紫叶酢浆草研究成果通过技术鉴定. 中国花卉园艺, 21, 15.

[11] 赵跃刚, 王隶书, 范艳君等 (2011) 酢浆草药材中总黄酮的含量测定. 时珍国医国药, 1, 81-82.

[12] 李正理 (1987) 植物制片技术. 北京科学出版社, 北京.

[13] 陈明林, 刘登义, 李珊珊 (2007) 酢浆草属5种植物的微形态特征观察. 植物资源与环境学报, 3, 7-18.

[14] 陈玲玲, 林振山, 何亮 (2010) 风传草本植物种子空间传播新模型. 生态学报, 17, 4643-4651.

[15] 朱金雷, 刘志民 (2012) 种子传播生物学主要术语和概念. 生态学杂志, 9, 2397-2403.

[16] 李儒海, 强胜 (2007) 杂草种子传播研究进展. 生态学报, 27, 5362-5370.

[17] 唐佳 (2010) 野生植物种子的传播方式. 西藏科技, 205, 63-65.

[18] 马绍宾, 李德铢 (2002) 高等植物的散布与进化、散布体类型、数量、寿命及散布机制. 云南植物研究, 5, 569-582.

分享
Top