悬臂梁静态几何非线性的有限元分析
Finite Element Analysis of Static Geometry Nonlinear about Cantilever Beam

作者: 罗 裴 , 田建伟 :武汉理工大学光纤传感技术国家工程实验室,武汉;

关键词: 悬臂梁集中载荷几何非线性有限元分析Cantilever Beam Concentrating Load Geometry Nonlinearity Finite Element Analysis

摘要:
介绍了悬臂梁几何非线性的有限元模型,并对悬臂梁的应力应变关系进行了推导(在线性范围内),在此基础上,利用有限元分析软件,对悬臂梁结构的静态几何非线性进行了有限元分析,研究发现,当悬臂梁结构在受到大变形而出现几何非线性时,现有的应力应变关系不再呈线性关系,而是呈现非线性,其理论推导必须采用非线性方程组来计算,而非线性方程组的求解可采用大变形问题的增量法——T.L法(拉格朗日法)。

Abstract: The finite element model of geometry nonlinearity about cantilever has been introduced in this paper. The relation of strain-stress about cantilever has been deduced (in range of linearity). Based on this, using finite element analysis soft, the static geometry nonlinearity of cantilever beam structure has been finitely analyzed. The study finds that the existing strain-stress relation is not linear relation when the cantilever beam structure shows the geometry nonlinearity after receiving large deformation, but is nonlinearity, and that the theoretical derivation must be computed by using nonlinear system of equations. But the solution of nonlinear equations can use increment means of large distortion question, which is T.L means (Lagrange means).

文章引用: 罗 裴 , 田建伟 (2014) 悬臂梁静态几何非线性的有限元分析。 土木工程, 3, 141-147. doi: 10.12677/HJCE.2014.35017

参考文献

[1] 张家伟, 刘生纬, 吴亚平, 等 (2013) 考虑恒载效应对梁静力反应影响的有限元分析. 应用力学学报, 5, 762-767.

[2] 谢卿, 王弘 (2013) 氢致钢内部疲劳裂纹萌生和扩展的有限元分析. 北京科技大学学报, 10, 1313-1319.

[3] 凌道盛, 徐兴(2004)非线性有限元及程序. 浙江大学出版社, 杭州.

[4] 杨昕光, 迟世春 (2013) 基于非线性破坏准则的土坡稳定有限元上限分析. 岩土工程学报, 6, 1-7.

[5] 蒋友琼 (1988) 非线性有限元法. 北京工业学院出版社, 北京.

[6] 孙训方, 方孝淑, 关来泰 (1994) 材料力学(下). 高等教育出版社, 北京.

分享
Top