量子Weyl代数的中心
The Centre of Quantum Weyl Algebras

作者: 柳鲁宁 , 王艳华 :上海财经大学数学学院,上海;

关键词: Weyl代数量子Weyl代数代数的中心上同调Weyl Algebra Quantum Weyl Algebra Centre of an Algebra Cohomology

摘要:
本文给出了(−1)-量子Weyl代数k<x1,x2,...,xn>/xixj+xjxi=aij 的中心是由 x12,x22,......x2n生成的。

Abstract: This paper shows that the centre of (−1)-quantum Weyl algebra k<x1,x2,...,xn>/xixj+xjxi=aij is generated by x12,x22,......x2n .

文章引用: 柳鲁宁 , 王艳华 (2014) 量子Weyl代数的中心。 理论数学, 4, 197-200. doi: 10.12677/PM.2014.45028

参考文献

[1] Ceken, S., Palmieri, J., Wang, Y.H. and Zhang, J.J. (2013) The discriminant controls automorphism groups of noncom mutative algebras. arXiv:1401.0793.

[2] Ceken, S., Palmieri, J.H., Wang, Y.H. and Zhang, J.J. (2014) The discriminant criterion and automorphism groups of quantized algebras. arXiv:1402.6625.

[3] Davydov, A., Kong, L. and Runkel, I. (2013) Functoriality of the center of an algebra. arXiv:1307.5956.

[4] Davydov, A. (2010) Centre of an algebra. Advances in Mathematics, 1, 319-348.

[5] Davydov, A. (2012) Full centre of an H-module algebra. Communications in Algebra, 1, 273-290.

[6] Rosenberg, A. (1961) Blocks and centres of group algebras. Mathematische Zeitschrift, 1, 209-216.

[7] Pino, G.A. and Crow, K. (2011) The center of a Leavitt path algebra. Revista Matemática Iberoamericana, 2, 621-644.

[8] Greechie, R.J., Foulis, D. and Pulmannová, S. (1995) The center of an effect algebra. Order, 1, 91-106.

[9] Brown, J.H. (2012) The center of a Kumjian-Pask algebra. arXiv:1209.2627.

分享
Top