一阶微分电路构成的混沌
Chaos Structured by First Order Differential Circuit

作者: 黄炳华 , 梁永清 :广西大学电气工程学院,南宁; 刘慧杰 :东莞理工学院,东莞;

关键词: 混沌频域功率平衡非线性耦合谐波相图Chaos Frequency Domain Power Balance Nonlinear Coupling Harmonic Phase Portrait

摘要:
混沌是有界非线性函数最一般的普遍形式,它普遍的存在于自然界的各个学科领域。混沌是各种各样有界非线性振荡的统一术语。本文证明三个频率不同谐波源混频构成的一阶微分电路,也可以产生混沌。它充分说明混沌函数存在的广泛性。该微分方程能够用谐波分析法和功率平衡定理求出它的主谐波解。并用仿真软件画出相图,验证求解结果的正确性。在上世纪混沌理论刚刚出现时,很多文献认为是奇异吸引子,这种认识显然是片面的。事实上,人们也可以做出一个完全相反的结论,相点的运动轨道既不发散趋于无穷,也不收敛为稳定极限环。相点自由任意的游荡在相空间不是随机的,是正常一般的运动形式。轨线不重复的混沌相图是无处不在的普遍现象,轨线不断重复的等周期振荡才是特殊的个别现象。

Abstract: Chaos is the most universally common form of bounded nonlinear function. It commonly exists in the various subject areas of nature. Chaos is the universal term of variously bounded nonlinear aperiodic oscillation. This paper proves that the first order differential circuit which is constituted by mixing of three harmonic sources with different frequency also can produce chaos. It sufficiently explains that the extensiveness of chaotic functions exists in nature. The main harmonic components in the differential equations can be solved by using the harmonic balance principle and power balance theorem. Their correctness of solving results can be verified by phase portrait plotted by simulation. In last century, the era when chaos theory was first published, chaos was considered as a singular attractor in a lot of literatures. The recognition is obviously unilateral and wrong. In fact, people can also make a completely opposite conclusion, the motional trajectory of phase point will neither diverge to be infinite nor converge to stable limit cycle. The phase point freely and arbitrarily wandering in phase space is ordinary and universal motional form, but it is non-random. Chaotic phase portraits on which trajectories are not repeated are pervasive phe-nomenon. The constant periodic oscillation which continuously repeats original orbit is an indi-vidual and special motion form.

文章引用: 黄炳华 , 刘慧杰 , 梁永清 (2014) 一阶微分电路构成的混沌。 现代物理, 4, 86-90. doi: 10.12677/MP.2014.45011

参考文献

[1] 冯朝文, 蔡理, 康强, 张立森 (2011) 一种新的三维自治混沌系统. 物理学报, 3, Article ID: 030503.

[2] 唐良端, 李静, 樊冰, 翟明岳 (2011) 新三维混沌系统及其电路仿真. 物理学报, 2, 785-793.

[3] 许喆, 刘崇新, 杨韬 (2010) 一种新型混沌系统的分析及其电路实现. 物理学报, 1, 131-139

[4] 王杰智, 陈增强, 袁著祉 (2006) 一个新混沌系统及其性质研究. 物理学报, 8, 3956-3963.

[5] 刘凌, 苏燕辰, 刘崇新 (2006) 一个新混沌系统及其电路仿真实验. 物理学报, 8, 3933-3937

[6] Yu, S.-M.,Qiu S.-S. and Lin, Q.-H. (2003) New results of study on ge-nerating multiple-scroll chaotic attractors. Science in China (Series F), 46, 104-115.

[7] Huang, B.H., Li, G.M. and Liu, H.J. (2014) Power balance theorem of frequency domain and its application. Journal of Modern Physics, 5, 1097-1108.

[8] 冯久超, 李广明 (2012) 功率平衡理论在研究非线性电路与混沌中的进展. 华南理工大学学报, 11, 13-18.

[9] 黄炳华, 钮利荣, 蔺兰峰, 孙春妹 (2007) 功率平衡基础上的基波分析法. 电子学报, 10, 1994-1998.

[10] 黄炳华, 黄新民, 韦善革 (2008) 用基波平衡原理分析非线性振荡与混沌. 通信学报, 1, 65-70.

[11] 梁永清, 黄炳华 (2014) 非线性电路频域的功率平衡. 太原理工大学学报, 3, 328-333.

[12] Huang, B.H., Huang, X.M. and Li, H. (2011) Main components of harmonic solutions of nonlinear oscillations. International Conference on Electric Information and Control Engineering, ICEICE, Wuhan, 15-17 April 2011, 2307-2310.

[13] Huang, B.H., Huang, X.M. and Li, H. (2011) Main components of harmonic solutions of nonlinear oscillations. Procedia Engineering, 16, 325-332.

[14] Huang, B.H., Yang, G.S., Wei, Y.F. and Huang, Y. (2013) Harmonic analysis method based on power balance. Applied Mechanics and Materials (Manufacturing Engineering and Process II), 325-326, 1508-1514.

[15] 关新平, 等 (2002) 混沌控制及其在保密通信中的应用. 第1版, 国防工业出版社, 北京, 1-16.

[16] 刘式达等 (2003) 自然科学中的混沌和分形. 第1版, 北京大学出版社, 北京, 1-32.

[17] 黄炳华, 李广明, 卫雅芬 (2012) 用虚功平衡原理求解无损耗系统的主谐波. 现代物理, 3, 60-69.

[18] 黄炳华, 李广明, 刘慧杰 (2013) 由无损耗电路构成的非周期振荡. 现代物理, 1, 1-8.

分享
Top