TAS/STBC系统在n-Rayleigh信道下的性能分析
Performance Analysis of TAS/STBC Systems under n-Rayleigh Fading Channels

作者: 徐凌伟 :中国海洋大学信息科学与工程学院,青岛;

关键词: 发射天线选择正交空时分组码n-Rayleigh信道平均符号误码率Transmit Antenna Selection Orthogonal Space-Time Block Code n-Rayleigh Fading Channels Average Symbol Error Probability

摘要:
在n-Rayleigh信道下,研究了使用发射天线选择(TAS)和正交空时分组码(STBC)的多输入多输出(MIMO)系统的平均符号误码率(ASEP)性能。基于标量加性高斯白噪声(AWGN)信道的方法,得到了系统使用多进制正交幅度调制(MQAM)和多进制相移键控调制(MPSK),在接收端的信噪比的表达式。然后对不同条件下的ASEP性能做了数值仿真,仿真结果表明:随着发射天线或接收天线数的增加,系统的ASEP性能得到了很好的改善,当使用QPSK调制,SNR = 12 dB,(3,3; 6)系统的误码率是2 × 10−3, (4,4; 8)系统的误码率是2 × 10−4, (5,5; 10)系统的误码率是2 × 10−5

Abstract: The average symbol error probability (ASEP) of multiple-input multiple-output (MIMO) systems employing transmit antenna selection (TAS) and orthogonal space-time block code (STBC) under n-Rayleigh fading channels is investigated in this paper. Based on the scalar additive white Gaus-sian noise (AWGN) channel approach, the exact form expressions of the signal-to-noise ratio (SNR) at the receiving end are derived for multiple quadrature amplitude modulation (MQAM), and mul-tiple phase shift keying modulation (MPSK). Then the ASEP performance under different conditions is evaluated through numerical simulations. Simulation results show that: the ASEP performance can be improved with the increase of the number of transmit antennas or receive antennas, when SNR = 12 dB, the ASEP of (3,3; 6) with QPSK is 2 × 10−3, (4,4;8) is 2× 10−4, (5,5; 10) is 2 × 10−5.

文章引用: 徐凌伟 (2014) TAS/STBC系统在n-Rayleigh信道下的性能分析。 电路与系统, 3, 37-44. doi: 10.12677/OJCS.2014.33007

参考文献

[1] Kaviani, S. and Tellambura, C. (2006) Closed-form BER analysis for antenna selection using orthogonal space-time block codes. IEEE Communication Letters, 10, 704-706.

[2] Kovacs, I.Z. (2002) Radio channel characterization for private mobile radio systems: Mobile-to-mobile radio link investigation. Aalborg University, Aalborg.

[3] 李兆训, 胡捍英, 任修坤等 (2011) 双瑞利衰落对传输系统性能的影响. 西安电子科技大学学报, 5, 172-177.

[4] 李兆训, 曹文魁, 梁波等 (2012) 双瑞利衰落信道下最大比合并性能研究. 电路与系统学报, 3, 88-93.

[5] Uysal, M. (2006) Diversity analysis of space-time coding in cascaded Rayleigh fading channels. IEEE Communication Letter, 3, 165-167.

[6] Sandhu, S. and Paulraj, A. (2000) Space-time block codes: A capacity perspective. IEEE Communication Letters, 12, 384-386.

[7] Salo, J., El-Sallabi, H.M. and Vainikainen, P. (2006) The distribution of the product of independent Rayleigh random variables. IEEE Transactions on Antennas and Propagation, 2, 639-643.

[8] Wang, K., Wang, X.D., Xu, W.Q., et al. (2012) Coordinated linear precoding in downlink multicell MIMO-OFDMA networks. IEEE Transactions on Signal Processing, 60, 4264-4277.

[9] Molteni, D., Nicoli, M. and Spagnolini, U. (2011) Performance of MIMO-OFDMA systems in correlated fading channels and non-stationary interference. IEEE Transactions on Wireless Communications, 10, 1480-1494.

[10] 梁彦, 束锋, 张一晋, Stevan, B. (2013) 稀疏多径信道环境中MIMO-OFDM系统的IQ不平衡和信道联合估计. 电子与信息学报, 35, 280-284.

[11] 许林 (2012) 基于STBC和MRC的多天线分集算法及其性能分析. 电讯技术, 12,1900-1904.

[12] Gore, D.A. and Paulraj, A.J. (2002) MIMO antenna subset selection with space-time coding. IEEE Transactions on Signal Processing, 10, 2580-2588.

[13] 徐慧, 王文博, 汪剑锋, 郑侃 (2008) 一种基于SVD的射频收发天线选择算法. 系统仿真学报, 14, 3756-3758.

[14] Yang, L. and Qin, J. (2006) Performance of Alamouti scheme with transmit antenna selection for M-ary signals. IEEE Transactions on Wireless Communications, 5, 423-425.

分享
Top