单位圆内线性微分方程解的[p,q]级
[p,q] -Order of Solutions of Linear Differential Equations in the Unit Disc

作者: 龚 攀 , 肖丽鹏 :江西师范大学数学与信息科学学院,南昌;

关键词: 微分方程[pq]级单位圆Differential Equations[pq] -Order Unit Disc

摘要:
主要研究单位圆内二阶线性微分方程 f+A1(z) f+ A0(z) f=F(z)解的[p,q]级,其中A0(z),A1(z)和F(z)是单位圆内解析函数。我们将得到一些微分方程解的复振荡结论。

Abstract: In this paper, we investigate the [p,q]-order of solution of second-order linear differential equa-tion f+A1(z) f+ A0(z) f=F(z), where A0(z), A1(z)  and F(z) are analytic functions in the unit disc. We obtain several theorems about the growth and oscillation of solutions of differential equations.

文章引用: 龚 攀 , 肖丽鹏 (2014) 单位圆内线性微分方程解的[p,q]级。 理论数学, 4, 151-160. doi: 10.12677/PM.2014.45023

参考文献

[1] Hayman, W.K. (1964) Meromorphic functions. Clarendon Press, Oxford.

[2] Heittokangas, J. (2000) On complex differential equations in the unit disc. Annales Academiæ Scientiarum Fennicæ Mathematica Dissertationes, 122, 1- 54.

[3] Laine, I. (1993) Nevanlinna Theory and complex differential equations, de Gruyter studies in mathematics, 15. Walter de Gruyter & Co., Berlin/New York.

[4] Laine, I. (2008) Complex differential equations, handbook of diffe-rential equations: Ordinary differential equations. Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, Vol. IV, 269-363.

[5] Tsuji, M. (1975) Potential theory in modern function theory. Chelsea, New York, Reprint of the 1959 Edition.

[6] Belaïdi, B. (2010) Oscillation of fast growing solutions of linear differential equations in the unit disc. Acta Universitatis Sapientiae, Mathematica, 2, 25-38.

[7] Belaïdi, B. (2011) Growth of solutions of linear differential equations in the unit disc. Bulletin of Mathematical Analysis and Applications, 3, 14-26.

[8] Cao, T.B. and Yi, H.Y. (2006) The growth of solutions of linear differential equations with coefficients of iterated order in the unit disc. Journal of Mathematical Analysis and Applications, 319, 278-294.

[9] Cao, T.B. (2009) The growth, oscillation and fixed points of solutions of complex linear differential equations in the unit disc. Journal of Mathematical Analysis and Ap-plications, 352, 739-748.

[10] Chen, Z.X. and Shon, K.H. (2004) The growth of solutions of differential equations with coefficients of small growth in the disc. Journal of Mathematical Analysis and Applications, 297, 285-304.

[11] Chyzhykov, I.E., Gundersen, G.G. and Heittokangas, J. (2003) Linear differential equations and loga-rithmic derivative estimates. Proceedings of the London Mathematical Society, 86, 735-754.

[12] Cao, T.B., Zhu, C.X. and Liu, K. (2011) On the complex oscillation of meromorphic solutions of second order linear differential equations in the unit disc. Journal of Mathematical Analysis and Applications, 374, 272-281.

[13] Juneja, O.P., Kapoor, G.P. and Bajpai, S.K. (1976) On the -order and lower -order of an entire function. Journal Fur Die Reine Und Angewandte Mathematik, 282, 53-67.

[14] Juneja, O.P., Kapoor, G.P. and Bajpai, S.K. (1977) On the -order and lower -type of an entire function. Journal Fur Die Reine Und Angewandte Mathematik, 280, 180-190.

[15] Belaïdi, B. (2012) Growth and oscillation theory of -order analytic solutions of linear differential equations in the unit disc. Journal of Mathematical Analysis, 3, 1-11.

[16] Latreuch, Z. and Belaïdi, B. (2013) Linear differential equations with analytic coefficients of -order in the unit disc. Sarajevo Journal of Mathematics, 9, 71-84.

[17] Cao, T.B. and Deng, Z.S. (2010) Solutions of non-homogeneous linear differential equations in the unit disc. Annales Polonici Mathematici, 97, 51-61.

[18] Latreuch, Z. and Belaïdi, B. (2013) Complex oscillation of differential polynomials in the unit disc. Periodica Mathematica Hungarica, 66, 45-60.

[19] Latreuch, Z. and Belaïdi, B. (2013) Complex oscillation of solutions and their derivatives of non-homogenous linear differetial equations in the unit disc. International Journal of Analysis and Applications, 2, 111-123.

[20] Bank, S. (1972) General theorem concerning the growth of solutions of first-order algebraic differential equations. Compositio Mathematica, 25, 61-70.

[21] Belaïdi, B. (2011) Growth of solutions to linear differential equations with analytic coefficients of -order in the unit disc. Electron. Journal of Differential Equations, 2011, 1-11.

分享
Top