常染色体显性遗传多囊肾病间质病变
Interstitial Disease of Autosomal Dominant Polycystic Kidney Disease

作者: 翁琳 , 贾英丽 , 孙逸 , 杨宝学 , 周虹 :北京大学医学部基础医学院药理学系,天然药物及仿生药物国家重点实验室,北京;

关键词: 常染色体显性遗传多囊肾病多囊蛋白转化生长因子-β1间质病变Autosomal Dominant Polycystic Kidney Disease Polycystin TGF-β1 Interstitial Disease

摘要:

常染色体显性遗传多囊肾病(Autosomal dominant polycystic kidney disease, ADPKD)是一种常见的单基因遗传病。它是导致终末期肾衰的重要疾病之一,发病率约为1/1000~1/400,约占终末期肾病病因的10%。目前尚缺乏有效治疗药物。近年来,国内外对其发病机制、诊断及治疗方面进行了很多相关的研究及其论述,主要集中在囊泡的发生发展和囊液分泌等方面,对肾脏间质参与的病变过程,如间质的炎症和纤维化,探讨较少。本文主要综述ADPKD发病机制及其间质病变在ADPKD发病中的作用。
Autosomal dominant polycystic kidney disease is a common single-gene genetic disease. It is one of the most important causes of end-stage renal failure. Its incidence is about 1/1000-1/400, accounting for about 10% of end-stage renal disease etiology. There are no effective drugs currently. In recent years, domestic and oversea researchers have conducted a lot of studies and discussions related to the pathogenesis, diagnosis and treatment, focused on the cyst development and secretion of cyst fluid secretion. But there is little research on renal interstitial disease, including interstitial inflammation and fibrosis. In this review, we mainly discuss the pathogenesis of ADPKD and effectives of interstitial disease in ADPKD.

文章引用: 翁琳 , 贾英丽 , 孙逸 , 杨宝学 , 周虹 (2014) 常染色体显性遗传多囊肾病间质病变。 生理学研究, 2, 5-11. doi: 10.12677/JPS.2014.22002

参考文献

[1] Gabow, P.A. (1991) Polycystic kidney disease: Clues to pathogenesis. Kidney International, 40, 989-996.

[2] Cheng, S., Lovett, D.H., et al. (2003) Gelatinase A (MMP-2) is necessary and sufficient for renal tubular epithelial-mesenchymal transformation. American Journal of Pathology, 162, 1937-1949.

[3] Kim, H., Oda, T., Lopez-Guisa, J., et al. (2001) TIMP-1 deficiency does not attenuate interstitial fibrosis in obstructive nephropathy. Journal of the American Society of Nephrology, 12, 736-748.

[4] 邓博 (2013) 常染色体显性多囊肾病的新认识. 肾脏病与透析肾移植杂志, 2, 166-169.

[5] Kassiri, Z., Oudit, G.Y., Kanadalam, V., et al. (2009) Loss of TIMP3 enhances interstitial nephritis and fibrosis. American Journal of Nephrology, 20, 1223-1235.

[6] Yoder, B.K. and Hou, X. (2002) The polycystic kidney disease proteins, polycystin-1, polycystin-2, Polaris, and cystin are co-localized in renal cilia. American Society of Nephrology, 13, 2508-2516.

[7] 崔心刚, 安瑞华, 王立明等 (2006) 基质金属蛋白酶1/组织金属蛋白酶抑制因子1在常染色体显性遗传性多囊肾组织中的表达. 第二军医大学学报, 11, 1174-1177.

[8] Oin, H., Rosenbaum, J., Barr, M., et al. (2001) An autosomal recessive polycystic kidney disease gene homolog is involved in intrafiageiiar transport in C. elegans ciliated meurons. Current Biology, 11, 457-461.

[9] Liu, B., Li, C.H., Liu, Z.J., et al. (2012) Increasing extracellular matrix collagen level and MMP activity induces cyst development in polycystic kidney disease. BMC Nephrology, 13, 109.

[10] Hanaoka, K., Qian, F., Boletta, A., et a1. (2000) Co-assembly of polycyetie-1and-2 produces unique cation-permeable currents. Nature, 408, 990-994.

[11] Ruggenenti, P., Remuzzi, A., et al. (2005) Ondei P safety and efficacy of long-acting somatostatin treatment in autosemal-dominant polycystic kidney disease, 1.

[12] Malhas, A.N., Abuknesha, R.A., Price, R.G., et al. (2002) Interaction of the leucine-rich repeats of polycystin-1 with extracellular matrix proteins possible role in cell proliferation. Journal of the American Society of Nephrology, 13, 19-26.

[13] Brasier, J.L. and Henske, E.P. (1997) Loss of the polycystic kidney disease (PKD) region of chromosome 16p13 in renal cyst cells supports a loss-of-function model for cyst pathogenesis. Journal of Clinical Investigation, 99, 194-199.

[14] Weston, B.S., Bagneris, C., Price, R.G., et al. (2001) The polycystin-1 C-type lectin domain binds carbohydrate in a calcium-dependent manner, and interacts with extracellular matrix proteins in vitro. Biochimica et Biophysica Acta, 1536, 161-176.

[15] Jiang, S.T., Chiou, Y.Y., Wang, E., et al. (2006) Defining a link with autosomal-dominant polycystic kidney disease in mice with congenitally low expression of Pkdl. American Journal of Pathology, 168, 205-220.

[16] Pritchard, L., Sloane-Stanley, J.A., Sharpe, J.A., et al. (2000) A human PKD1 transgene generates functional polycystin-1 in mice and is associated with a cystic phenotype. Human Molecular Genetics, 9, 2617-2627.

[17] Thivierge, C., Kurbegovic, A., Couillard, M., et al. (2006) Overexpression of PKD1 causes polycystic kidney disease. Molecular and Cellular Biology, 26, 15381548.

[18] Kuo, N.T., Norman, J.T., Wilson, P.D., et al. (1997) Acidic FGF regulation of hyperproliferation of fibroblasts in human autosomal dominant polycystic kidney disease. Biochemical and Molecular Medicine, 61, 178-191.

[19] Liu, D.Y., Wang, C.J., et al. (2014) A Pkd1-Fbn1 genetic interaction implicates TGF-b signaling in the pathogenesis of vascular complications in autosomal dominant polycystic kidney disease. Journal of the American Society of Nephrology, 25, 81-91.

[20] Norman, J., Kuo, N.T., Gathi, L., et al. (2006) Changes in fibroblast growth and extracellular matrix metabolism in ADPKD. Kidney International, 47, 27-728.

[21] Weimbs, T. (2006) Regulation of mTOR by polycystin-1. Cell Cycle, 21, 2425-2429.

[22] Chang, M.Y., Parker, E., Ibrahim, S., et al. (2006) Haploinsufficiency of Pkd2 is associated with increased tubular cell proliferation and interstitial fibrosis in two murine Pkd2 models. Nephrology Dialysis Transplantation, 21, 2078-2084.

[23] Karihaloo, A., Koraishy, F., Huen, S.C., et a1. (2011) Macrophages promote cystgrowth in polyeystie kidney disease. Journal of the American Society of Nephrology, 22, 1809-1814.

[24] Zheng, D., Wolfe, M., Cowley, Jr., B.D., et al. (2003) Urinary excretion of monocyte chemoattractant protein-1 in autosomal dominant polycystic kidney disease. Journal of the American Society of Nephrology, 14, 2588-2595.

[25] Thong-Ngam, D., Tangkijvanich, P., Lerknimitr, R., Mahachai, V., Theamboonlers, A. and Poovorawan, Y. (2006) Diagnostic role of serum interleukin-18 in gastric cancer patients. World Journal of Gastroenterology, 12, 4473-4477.

[26] Kawabata, T., Ichikura, T., Majima, T., Seki, S., Chochi, K., Takayama, E., Hiraide, H. and Mochizuki, H. (2001) Preoperative Serum interleukin-18 level as a postoperative prognostic marker in patients with gastric carcinoma. Cancer, 92, 2050-2055.

[27] Song, X, Di, G.V., He, N., et al. (2009) Systems biology of autosomal dominant polycystic kidney disease (ADPKD): Computational identification of gene expression pathways and integrated regulatory networks. Human Molecular Genetics, 18, 2328-2343.

[28] Rhyu, D.Y., Yang, Y., Ha, H., Lee, G.T., Song, J.S., Uh, S.T. and Lee, H.B. (2005) Role of reactive oxygen species in TGF-βl-induced mitogen-activated protein kinase activation and epithelial-mesenchymal transition in renal tubular epithelial cells. Journal of the American Society of Nephrology, 16, 667-675.

[29] 戎殳, 马熠熠, 陈冬平等 (2012) 常染色体显性多囊肾病患者652次住院原因分析. 中华肾脏病杂志, 28, 10,

[30] 汤兵, 梅长林, 孙田美, 等 (2005) 转化生长因子β1在人多囊肾病发病中的作用. 医学研究生学报, 9, 793-799.

[31] 崔心刚, 王立明, 朱有华 (2006) 常染色体显性遗传多囊肾差异表达基因的研究. 第二军医大学学报, 2, 182-185.

[32] Wilson, P.D., Norman, J.T., Kuo, N., et al. (1996) Abnormalities in extracellular matrix regulation in autosomal dominant polycystic kidney disease (ADPKD). Contributions to Nephrology, 118, 126-134.

[33] Hassane, S., Leonhard, W.N., van der Wal, A., Ha-winkels, L.J., Lantinga-van Leeuwen, I.S., ten Dijke, P., Breuning, M.H., de Heer, E. and Peters, D.J. (2010) Elevated TGFβ-smad signalling in experimental Pkd1 models and human patients with polycystic kidney disease. Journal of Pathology, 222, 21-31.

[34] Yuan, A.H. and Mei, C.L. (2003) Expression of hepatocyte growth factor and its receptor in autosomal dominant polycystic kidney disease cyst-lining epithelial cells. Chinese Journal of Nephrology, 19, 228-234.

[35] Yuan, A.H. and Mei, C.L. (2004) Effects of hepatocyte growth factor on proliferation of autosomal dominant polycystic kidney disease cyst-lining epithelial cells and its signal transduction mechanism. Chinese Journal of Nephrology, 20, 94-97.

[36] Dai, B., Sun, T.M., Mei, C.L., et al. (2005) Expression of kerathocyte growth factor in renal cystic tissues of patients with autosomal dominant polycystic kidney disease. Chinese Journal of Internal Medicine, 44, 389-390.

[37] Sun, T.M., Dai, B., Mei, C.L., Liu, S.Q., Shen, X.F., Wang, W.J., Tang, B., Zhang, S.Z., Zhao, H.D. and Song, J. (2003) Effect of keratinocyte growth factor on cell cycle and regulatory protein of cyst-lining epithelia in autosomal dominant polycystic kidney disease. Chinese Journal of Nephrology, Dialysis & Transplantation, 12, 516-519.

[38] Mei, C., Mao, Z., Shen, X., Wang, W., Dai, B., Tang, B., Wu, Y., Cao, Y., Zhang, S., Zhao, H. and Sun, T. (2005) Role of keratinocyte growth factor in the pathogenesis of autosomal dominant polycystic kidney disease. Nephrology, Dialysis, Transplantation, 20, 2368-2375.

[39] Wu, Y.M., Mei, C.L., Sun, T.M., et al. (2004) Role of insulin-like growth factor-1 in the pathogenesis of autosomal dominant polycystic kidney disease. Chinese Journal of Nephrology, 20, 290-294.

[40] Liu, Y. (2006) Renal fibrosis: New insights into pathogenesis and therapeutics. Kidney International, 69, 213-217.

[41] Zhang, Y.E. (2009) Non-smad pathways in TGF-β signaling. Cell Research, 19, 128-139.

[42] Inoki, K., Haneda, M., Ishida, T., Mori, H., Maeda, S., Koya, D., Sugimoto, T. and Kikkawa, R. (2000) Role of mitogen-activated protein kinases as downstream effectors of transforming growth factor-β in mesangial cells. Kidney International Supplements, 77, S76-S80.

[43] He, W., Dai, C., Li, Y., Zeng, G., Monga, S.P. and Liu, Y. (2009) Wnt/β-catenin signaling promotes renal interstitial fibrosis. Journal of the American Society of Nephrology, 20, 765-776.

[44] Howe, L.R., Watanabe, O., Leonard, J. and Brown, A.M. (2003) Twist is up-regulate in response to Wnt and inhibits mouse mammary cell differentiation. Cancer Research, 63, 1906-1913.

[45] 郑颖, 张璟, 卓文磊, 等 (2007) TGF-β1对人肾小管上皮细胞表达糖原合成酶激酶-3β的影响. 重庆医学, 5, 414-416.

[46] Elberg, D., Jayaraman, S., Turman, M.A. and Elberg, G. (2012) Transforming growth factor-β inhibits cystogenesis in human autosomal dominant polycystic kidney epithelial cells. Experimental Cell Research, 318, 1058-1516.

[47] Yamaguchil, T., Nagaol, S., Wallace, D.P., et al. (2003) Cycljc AMP activates B-Raf and ERK in cvst epithelial cells from autosomal-dominant polycystic kidneys. Kidney International, 63, 1983-1994.

[48] Hanaoka, K. and Guggino, W.B. (2000) cAMP regulates cell proliferation and cyst formation in autosomal polycvstic kidney disease cells. Journal of the American Society of Nephrology, 11, 1179-1187.

[49] Yamaguchi, T., Wallace, D.P., Magenheimer, B.S., Hempson, S.J., Grantham, J.J. and Calvet, J.P. (2004) Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype. Journal of Biological Chemistry, 279, 40419-40430.

[50] Nakamura, T., Ushiyama, C., Suzuki, S., et al. (2000) Elevation of serum levels of metalloproteinase-1, tissue inhibitor of metalloproteinase-1 and type IV collagen, and plasma levels of metalloproteinase-9 in polycystic kidney disease. American Journal of Nephrology, 20, 32-36.

分享
Top