三门核电厂氢气风险控制措施研究
Hydrogen Risk Control Measures for Sanmen NPP

作者: 袁嘉琪 :中核三门核电有限公司,台州;

关键词: 严重事故管理导则安全壳严重威胁氢气风险SAMG Containment Severe Challenge Hydrogen Risk

摘要:

安全壳冷却失效导致严重事故后安全壳处于严重威胁状态,超压风险和氢气风险并存。结合电厂严重事故管理导则,研究安全壳严重威胁状态下的氢气风险控制。根据严重事故管理导则在安全壳严重威胁状态下执行SCG-2“恢复安全壳冷却”和SCG-3“控制安全壳氢气风险”中的严重事故管理措施。研究发现在降低安全壳压力的同时破坏了安全壳内的惰化环境,导致较高的氢气风险,如不采取减少氢气装量的措施,则无法真正消除氢气风险。

Abstract:  Failure of containment cooling induces inert containment environment after initial event and results in coexistence of containment overpressure challenge and hydrogen challenge, which is a containment severe challenge status. After Fukushima accident, assessment of hydrogen risk under containment severe challenge status according to Sanmen SAMG in operation is needed. Effect of SCG-2 and SCG-3 from SAMG is investigated; the result shows that establishing of containment cooling does depressurize the containment but steam inert is break and high hydrogen risk is observed. The preferred means in SAMG does not reduce hydrogen inventory, and thus do not mitigate hydrogen risk fundamentally.

文章引用: 袁嘉琪 (2014) 三门核电厂氢气风险控制措施研究。 核科学与技术, 2, 52-58. doi: 10.12677/NST.2014.23009

参考文献

[1] US.NRC (2011) Recommendations for enhancing reactor safety in the 21th century. US. Nuclear Regulatory Commission, Rockville, Maryland.

[2] 国家核安全局 (2011) 核安全与放射性污染防治“十二五”规划及2020年远景目标. 国家核安全局, 北京.

[3] Ang, M.L., Peers, K., Kersting, E., Fassmann, W., Tuomisto, H., Lundstrom, P., Helle, M., Gustavsson, V. and Jacobsson, P. (2001) The development and demonstration of integrated modelsfor the evaluation of severe accident managementstrategies—SAMEM. Nuclear Engineering and Design, 209, 223-231.

[4] 三门核电 (2013) TSC严重威胁状态树(1-OP-GJP-513). 三门核电, 台州.

[5] Westinghouse Electric Co. LLC. (2011) AP1000 design control document, Revision 19. Westinghouse Electric Co. LLC, Butler County, Pennsylvania.

[6] 石雪垚, 詹经祥, 刘建平 (2012) 严重事故管理导则中的氢气风险判断及事故模拟分析. 核动力工程, S1, 104106.

分享
Top