基于支持向量机的线条图像语义主题自动发现方法
Automatic Semantic Topic Discovery Approach of the Line Image Based on Support Vector Machine

作者: 金 聪 , 刘金安 :华中师范大学计算机学院,武汉;

关键词: 数字图像语义主题发现图像块聚类支持向量机Digital Image Semantic Topic Discovery Text Clustering Support Vector Machine

摘要:
提出了一种基于支持向量机分类器的线条图像语义主题自动发现方法。首先对训练图像进行分块,在对图像子块进行聚类后,得到由聚类中心构成的类集合;从每幅训练图像的注释文字中提取所有名词构成关键词集合。其次,对未标注的测试图像进行同样分块处理,计算子块与每个关键词的相关性,得到每个子块的标注词集合。最后,计算每个关键词在各个子块标注中出现的次数,取出现次数最多的关键词作为图像的语义主题。实验结果表明,所提出的方法对于线条图像的语义主题自动发现是有效的,具有比较好的性能。

Abstract: A semantic topic discovery approach of the line image, based on support vector machine, has been proposed in this paper. Firstly, the training images are divided into non-overlapping sub- blocks with same size. After clustering image sub-blocks, we obtained class set generated by cluster centers, and extracted all nouns from text annotation of each training image in order to obtain a keyword set. Secondly, the un-label testing image is also divided into non-overlapping sub-blocks as same as training images, we calculated the correlation between the sub-block and each keyword, and a keywords set for each sub-block may be obtained. Finally, the number of each keyword appearing in the each sub-block is calculated, we let the keywords with maximum to occurrences number be the semantic topics of the line image. The experimental results confirm that proposed automatic semantic topic discovery approach for line image is effective and has good performance.

Abstract:

文章引用: 金 聪 , 刘金安 (2014) 基于支持向量机的线条图像语义主题自动发现方法。 图像与信号处理, 3, 78-85. doi: 10.12677/JISP.2014.33011

参考文献

[1] 张素兰, 郭平, 张继福, 胡立华 (2012) 图像语义自动标注及其粒度分析方法. 自动化学报, 5, 688-697.

[2] 王梅, 周向东, 等 (2008) 基于扩展生成语言模型的图像自动标注方法. 软件学报, 9, 2449-2460.

[3] Jin, C. and Guo, J.L. (2014) Image semantic annotation approach based on the feature matching. Springer Series: Advances in In-telligent Systems and Computing, 250, 281-288.

[4] Carneiro, G., Chan, A.B., Moreno, P.J. and Vasconcelos, N. (2007) Supervised learning of semantic classes for image annotation and retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29, 394-410.

[5] 赵琦, 张智雄, 孙坦, 许雁冬 (2009) 主题发现技术方法研究. 情报理论与实践, 4, 103-108.

[6] 郭建永, 蔡勇, 甄艳霞 (2008) 基于文本聚类技术的主题发现. 计算机工程与设计, 6, 1426-1432.

[7] 王小华, 徐宁, 志群 (2011) 基于共词分析的文本主题词聚类与主题发现. 情报科学, 11, 1621-1624.

[8] 陈友, 程学旗, 杨森 (2011) 面向网络论坛的高质量主题发现. 软件学报, 8, 1621-1624.

[9] Li, Z.D., Wang, Y., Chen, J., Xu, J. and Larid, J. (2010) Image topic discovery with saliency detection. British Machine Vision Conference (BMVC), Aberystwyth, 30 August 2010-2 September 2010.

[10] Christiani, N. and Shawe-Taylor, J. (2000) An introduction to support vector machines and other kernel based learning methods. Cambridge University Press, Cambridge.

[11] Duda, R. and Hart, P. (1973) Pattern classification and scene analysis. John Wiley & Sons, New York.

分享
Top