Burgers方程的交替分组迭代法
Alternating Group Iterative Methods for Burgers Equations

作者: 陈 宁 , 顾海明 :青岛科技大学数理学院,青岛;

关键词: Burgers方程交替分组迭代法稳定性收敛性Burgers Equations Group Explicit Iterative Methods Stability Convergence

摘要:
给出了Burgers方程的一种新的交替分组显式迭代方法,并用线性化方法分析了其稳定性和收敛性,给出了模型问题的数值结果,并在数值例子中对于精确解和数值解做出了比较,验证了该方法的稳定性和收敛性。

Abstract: Alternating group explicit iterative methods for Burgers problems are given. The stability and convergence are analyzed by the linear method. Numerical results of the model problem are given. And the comparison of exact and numerical solutions is made to verify the stability and the con-vergence of the method.

文章引用: 陈 宁 , 顾海明 (2014) Burgers方程的交替分组迭代法。 理论数学, 4, 122-129. doi: 10.12677/PM.2014.44019

参考文献

[1] Douglas, Jr., J. and Richford, Jr., H.H. (1956) On the numerical solution of heat conduction problems in two and three space variables. Transactions of the AMS—American Mathematical Society, 82, 421-439.

[2] Evans, D.J. and Abdullah, A.R. (1983) Group explicit methods for parabolic equations. International Journal of Com- puter Mathematics, 14, 73-105.

[3] Evans, D.J. and Abdullah, A.R. (1985) A new explicit method for the diffusion-convection equation. Computers Ma- thematics with Applications, 11, 145-154.

[4] 张宝琳 (1991) 求解扩散方程的交替分段显–隐式方法. 数值计算与计算机应用, 4, 245-253.

[5] 蒋锦良 (1992) 求解对流占优Burgers方程的随流格式. 计算物理, 2, 127-132.

[6] 金承日, 刘家琦 (1998) Burgers 方程的交替分组显式迭代方法. 计算物理, 5, 607-613.

[7] 王同科 (2002) 二维对流扩散方程的基于Bool和逼近的交替方向特征差分格式. 数值计算与计算机应用, 2, 154-160.

[8] Dag, I., Irk, D. and Saka, B. (2005) A numerical solution of the Burgers equation using cubic B-spline. Applied Ma- thematics and Computation, 163, 199-211.

[9] Saka, B. and Dag, I. (2007) Quartic B-spline collocation method to the numerical solutions of the Burgers equation. Chaos, Solitons Fractals, 32, 1125-1137.

分享
Top