压握状态下不同结构支架的力学分析
Mechanical Analyses of Stents with Different Structures under Compressing State

作者: 任庆帅 , 李秋池 , 乔爱科 :北京工业大学生命科学与生物工程学院,北京;

关键词: 血管支架三维建模有限元分析生物力学Stent Three-Dimensional Modeling Finite Element Analysis Biomechanics

摘要:

研究不同连接筋结构的血管支架的压握性能及支架在压握状态下的柔顺性性能,为支架的设计、开发及介入治疗提供科学的指导。利用Pro/E三维软件构建三种不同链接筋的支架模型。根据支架连接筋的结构分别称为L-支架、V-支架和S-支架。应用ABAQUS软件模拟3种不同链接筋支架的压握和弯曲过程,并进一步分析3种支架的压握性能和柔顺性。在支架压握过程中,L-支架、V-支架和S-支架的弹性回弹率分别为2.67%、6.00%和11.30%,轴向伸长率分别是1.74%、1.57%和2.61%。3种支架在压握状态下的弯曲过程中,L-支架上的应力峰值最小,3种支架端面中心点的位移分别为0.135 mm、0.578 mm和0.675 mm。结论为:L-支架压握后的回弹率最小,压握效果最好;V-支架的轴向伸长率最小,方便在血管中的运输;S-支架在压握状态下的柔顺性最好,较易送达迂曲的血管。

Abstract: In order to provide scientific guidance of design and development of stents and interventional treatment, the crimping properties and the flexibilities under crimping of the stents with different structures of connecting ribs were studied in this paper. The models of three different structures of connecting ribs were built by commercial software. L-stent, V-stent and S-stent were defined according to different link structures. Finite element analysis was carried out to analyze the crimping properties of three kinds of stents, and the flexibility under crimping was further researched. In the course of the crimping, the resilient rates of L-stent, V-stent and S-stent were respectively 2.67%, 6.00% and 11.30%, and axial elongations were respectively 1.74%, 1.57% and 2.61%. Under the crimping, the peak stress of L-stent had the minimum distribution compared to the others. Three stents displacements of the center of the end face were respectively 0.135 mm, 0.578 mm and 0.675 mm. In conclusion, L-stent had the best performance of crimping as it’s the minimum resilient rate after crimping; V-stent was suitable for transport in the vessels because it's the minimum axial elongation. S-stent had the best flexibility which was easier to reach tortuous vessels.

文章引用: 任庆帅 , 李秋池 , 乔爱科 (2014) 压握状态下不同结构支架的力学分析。 生物物理学, 2, 15-22. doi: 10.12677/BIPHY.2014.22002

参考文献

[1] 王跃轩, 易红, 倪中华, 顾兴中 (2005) 医用血管支架生物力学性能分析方法研究. 东南大学学报, 2, 216-221.

[2] 吴卫 (2007) 人体血管支架有限元分析与结构拓扑优化. 大连理工大学, 大连.

[3] Sawada, S., Saito, S., Kotani, K., et al. (1991) Study of the physical properties of expandable metallic stents. Radiation Medicine, 9, 213-216.

[4] Ormiston, J.A., Dixon, S.R., Webster, M., et al. (2000) Stent longitudinal flexibility: A comparison of 13 stent designs before and after balloon expansion. Catheterization and Cardiovascular Interventions, 50, 120-124.

[5] Rieu, R., Barragan, P., Garitey, V., et al. (2003) Assessment of the trackability, flexibility, and conformability of coro- nary stents: A comparative analysis. Catheterization and Cardiovascular Interventions, 59, 496-503.

[6] 周承倜, 董何彦 (2008) 冠状动脉支架力学性能的理论和实验研究. 应用力学学报, 4, 26-31.

[7] Mori, K. and Saito, T. (2005) Effects of stent structure on stent flexibility measurements. Annals of Biomedical Engi- neering, 33, 733-742.

[8] Petrini, L., Migliavacca, F., Auricchio, F., et al. (2004) Numerical investigation of the intravascular coronary stent flexibility. Journal of Biomechanics, 37, 495-501.

[9] Wu, W., Yang, D.Z., Qi, M., et al. (2007) An FEA method to study flexibility of expanded coronary stents. Journal of Materials Processing Technology, 184, 447-450.

[10] Fontaine, A.B., Spigos, D.G., Eaton, G., et al. (1994) Stent-induced intimal hyperplasia: are there fundamental differ- ences between flexible and rigid stent designs. Journal of Vascular and Interventional Radiology, 5, 739-744.

[11] 李宁, 张洪武 (2011) 冠脉支架纵向柔顺性数值模拟. 计算机力学学报, 6, 309-314.

[12] 李宁, 张洪武 (2011) 冠脉支架纵向柔顺性优化模型. 计算机力学学报, 6, 315-319.

[13] 王明, 马全超, 张文光, 罗云 (2012) 压握过程对球囊扩张支架性能的影响. 上海交通大学学报, 4, 646-650.

[14] 李田昌, 胡大一 (2000) 冠状动脉内支架进展. 中国医疗器械信息, 6, 6-13.

[15] 李红霞, 张艺浩, 王希诚 (2012) 基于有限元模拟的支架扩张、血流动力学及支架疲劳分析. 医用生物力学, 27, 40-47.

[16] 朱秀娟 (2009) 有限元分析网格划分的关键. 机械工程与自动化, 152, 185-186.

[17] 王晓, 冯海全, 王文雯, 张瑞敏, 陈彦龙 (2013) 球囊扩张式冠脉支架生物力学性能研究. 中国生物医学工程学报, 32, 203-210.

[18] Ormiston, J.A., Dixon, S.R., Webster, M.W.I., et al. (2000) Stent longitudinal flexibility: A comparison of 13 stent de- signs before and after balloon expansion. Catheterization and Cardiovascular Interbentions, 50, 120-124.

[19] Petrinia, L., Migliavaccab, F., Ferdinando, A., et al. (2004) Numerical investigation of the intravascular coronary stent flexibility. Journal of Biomechanics, 37, 495-501.

[20] Kornowski, R., Hong, M.K., Tio, F.O., et al. (1998) In-stent restenosis: Contributions of inflammatory response and arterial injury to neointimal hyperplasia. Journal of the American College of Cardiology, 31, 224-230.

[21] 张站柱, 乔爱科 (2012) 支架内再狭窄的生物力学研究进展. 医用生物力学, 27, 698-702.

[22] 张站柱, 乔爱科, 付文宇 (2013) 不同连接筋结构的支架治疗椎动脉狭窄的力学分析. 医用生物力学, 28, 44-49.

[23] 张站柱, 乔爱科, 付文宇 (2013) 不同连接筋结构的支架治疗椎动脉狭窄的血流动力学数值模拟. 医用生物力学, 28, 148-153.

[24] Qiao, A. and Zhang, Z. (2013) Solid and fluid simulations of vertebral artery stenosis treated with stents with different shapes of link. Proceedings of the ASME, Vol. 1A, V01AT20A003.

[25] Qiao, A. and Zhang, Z. (2014) Solid and fluid simulations of vertebral artery stenosis treated with stents with different shapes of link. Applied Mechanics and Materials, 553, 338-343.

[26] Qiao, A. and Zhang, Z. (2014) Numerical simulation of vertebral artery stenosis treated with different stents. Journal of Biomechanical Engineering, 136, Article ID: 041007.

分享
Top