过渡金属化合物为高效催化剂有氧氧化生物质衍生5-羟甲基糠醛生成2,5-二甲酰基呋喃的研究
Transition Metal Compounds as Efficient Catalysts in Aerobic Oxidation of Biomass-Derived 5-Hydroxymethylfurfural to 2,5-Diformylfuran

作者: 张盛强 , 李维烽 , 林鹿 :厦门大学,能源学院能源研究院,厦门;

关键词: 催化氧化5-羟甲基糠醛25-二甲酰基呋喃生物质化学品Catalytic Oxidation 5-Hydroxymethylfurfural 25-Diformylfuran Biomass Chemicals

摘要:

2,5-二甲酰基呋喃(DFF)是一种由5-羟甲基糠醛或其他生物基碳水化合物衍生的重要平台分子,它在有机合成工业的众多领域中具有许多潜在用途。鉴于其目前较高的价格以及合成技术的不成熟性,对该化合物的研究近年来已然成为研究热点。为了将来能够实现DFF工业化生产,已开发了一些技术用于该产品的高效生产。在本研究中,一些过渡金属化合物以及镧系化合物被用作有氧催化氧化生物质模型化合物5-羟甲基糠醛(5-HMF)获取高附加值DFF产品转化反应过程的催化剂,这些催化剂包括Nb2O5V2O5C3F9O9S3Yb·xH2ONa3VO4KVO3以及MnO2。由气相色谱分析(GC)以及气质分析(GC-MS)的结果可知:Nb2O5Na3VO4该转化反应没有明显的催化活性。此外,当以C3F9O9S3Yb·xH2OMnO2为催化剂时,没有DFF生成,但生成了其他氧化产物比如5-乙酰氧基甲基-2-呋喃醛。其中,发现KVO3V2O5在有氧选择性催化氧化5-HMF生成DFF的反应中是两种高效的催化剂

Abstract:
2,5-diformylfuran (DFF) is one of the important platform molecules derived from 5-hydroxymethyl- furfural (HMF) or other bio-based carbohydrates, which has lots of potential applications in many fields of organic synthesis industry. This compound has become a research focus in recent years due to its relatively high price and immature synthesis technology. To realize the industrial production of DFF in the future, many methods have been attempted to achieve this product efficiently. In this research, some transition metal compounds and lanthanides, including Nb2O5, V2O5, C3F9O9S3Yb·xH2O, Na3VO4, KVO3 and MnO2, were adopted as plausible high-efficiency catalysts in aerobic oxidation of biomass-derived model molecule 5-Hydroxymethylfurfural (HMF) with the purpose of achieving high value-added DFF. The results from gas chromatographic analysis (GC) and gas chromatography-mass spectrometer (GC-MS) showed that Nb2O5 and Na3VO4 seem to have no obvious catalytic activity in this reaction. Moreover, no DFF was formed with C3F9O9S3Yb·xH2O and MnO2, other oxidation products such as 5-acetoxymethyl-2-furaldehyde were formed; KVO3 and V2O5 were found to be efficient catalysts for the aerobic selective oxidation reaction from HMF to DFF.

文章引用: 张盛强 , 李维烽 , 林鹿 (2014) 过渡金属化合物为高效催化剂有氧氧化生物质衍生5-羟甲基糠醛生成2,5-二甲酰基呋喃的研究。 合成化学研究, 2, 41-49. doi: 10.12677/SSC.2014.22005

参考文献

[1] Antonyraj, C.A., Jeong, J., Kim, B., Shin, S., Kim, S., Lee, K.Y. and Cho, J.K. (2013) Selective oxidation of HMF to DFF using Ru/γ-alumina catalyst in moderate boiling solvents toward industrial production. Journal of Industrial and Engineering Chemistry, 19, 1056-1059.

[2] De Souza, R.L., Yu, H., Rataboul, F. and Essayem, N. (2012) 5-hydroxymethylfurfural (5-HMF) production from hexoses: Limits of heterogeneous catalysis in hydrothermal conditions and potential of concentrated aqueous organic acids as reactive solvent system. Challenges, 3, 212-232.

[3] Davis, S.E., Houk, L.R., Tamargo, E.C., Datye, A.K. and Davis, R.J. (2011) Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd and Au catalysts. Catalysis Today, 160, 55-60.

[4] Yang, Z.Z., Deng, J., Pan, T., Guo, Q.X. and Fu, Y. (2012) A one-pot approach for conversion of fructose to 2,5-diformylfuran by combination of Fe3O4-SBA-SO3H and K-OMS-2. Green Chemistry, 14, 2986-2989.

[5] Simeonov, S.P., Coelho, J.A.S. and Afonso, C.A.M. (2012) An integrated approach for the production and isolation of 5-hydroxymethylfurfural from carbohydrates. ChemSusChem, 5, 1388-1391.

[6] Ding, Z.D., Shi, J.C., Xiao, J.J., Gu, W.X., Zheng, C.G. and Wang, H.J. (2012) Catalytic conversion of cellulose to 5-hydroxymethyl furfural using acidic ionic liquids and Co-catalyst. Carbohydrate Polymers, 90, 792-798.

[7] Dutta, S., De, S., Alam, M.I., Abu-Omar, M.M. and Saha, B. (2012) Direct conversion of cellulose and lignocellulosic biomass into chemicals and biofuel with metal chloride catalysts. Journal of Catalysis, 288, 8-15.

[8] Tao, F.R., Song, H.L. and Chou, L.J. (2011) Catalytic conversion of cellulose to chemicals in ionic liquid. Carbohydrate Research, 346, 58-63.

[9] Gallo, J.M.R., Alonso, D.M., Mellmer, M.A. and Dumesic, J.A. (2013) Production and upgrading of 5-hydroxymenthylfurfural using heterogeneous catalysts and biomass-derived solvents. Green Chemistry, 15, 85-89.

[10] Alamillo, R., Tucker, M., Chia, M., Pagán-Torres, Y. and Dumesic, J. (2012) The selective hydrogenation of biomass-derived 5-hydroxymethylfurfural using heterogeneous catalysts. Green Chemistry, 14, 1413–1419.

[11] Che, P., Lu, F., Zhang, J., Huang, Y., Nie, X., Gao, J. and Xu, J. (2012) Catalytic selective etherification of hydroxyl groups in 5-hydroxymethylfurfural over H4SiW12O40/MCM-41 nanospheres for liquid fuel production. Bioresource Technology, 119, 433-436.

[12] Tong, X.L., Ma, Y. and Li, Y.D. (2010) Biomass into chemicals: Conversion of sugars to furan derivatives by catalytic processes. Applied Catalysis A: General, 385, 1-13.

[13] Ma, J.P., Du, Z.T., Xu, J., Chu, Q.H. and Pang, Y. (2011) Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran, and synthesis of a fluorescent material. ChemSusChem, 4, 51-54.

[14] Hui, Z. and Gandini, A. (1992) Polymeric Schiff bases bearing furan moieties. European Polymer Journal, 28, 14611469.

[15] Méalares, C. and Gandini, A. (1996) Polymeric Schiff bases bearing furan moieties 2. Polyazines and polyazomethines. Polymer International, 40, 33-39.

[16] Xiang, T.F., Liu, X.M., Yi, P., Guo, M.M., Chen, Y.S., Wesdemiotis, C., Xu, J. and Pang, Y. (2013) Schiff base polymers derived from 2,5-diformylfuran. Polymer International, 62, 1517-1523.

[17] Hopkins, K.T., Wilson, W.D., Bender, B.C., McCurdy, D.R., Hall, J.E., Tidwell, R.R., Kumar, A., Bajic, M. and Boykin, D.W. (1998) Extended aromatic furan amidino derivatives as anti-Pneumocystis carinii agents. Journal of Medical Chemistry, 41, 3872-3878.

[18] Richter, D.T. and Lash, T.D. (1999) Oxidation with dilute aqueous ferric chloride solutions greatly improves yields in the “4+1” synthesis of sapphyrins. Tetrahedron Letters, 40, 6735-6738.

[19] Adams, H., Bastida, R., De Blas, A., Carnota, M., Fenton, D.E., Macias, A., Rodriguez, A. and Rodriguez-Blas, T. (1997) Complexes of lead(II) and lanthanide(III) ions with a macrocyclic ligand containing a furan head unit. Crystal structure of a methanol inclusion compound of a novel macrocycle. Polyhedron, 16, 567-572.

[20] Del Poeta, M., Schell, W.A., Dykstra, C.C., Jones, S.K., Tidwell, R.R., Kumar, A., Boykin, D.W. and Perfect, J.R. (1998) In vitro antifungal activities of a series of dication-substituted carbazoles, furans, and benzimidazoles. Antimicrobial Agents & Chemotherapy, 42, 2503-2510.

[21] Amarasekara, A.S., Green, D. and Williams, L.D. (2009) Renewable resources based polymers: Synthesis and characterization of 2,5-diformylfuran-urea resin. European Polymer Journal, 45, 595-598.

[22] Liu, B., Zhang, Z., Lv, K., Deng, K. and Duan, H. (2014) Efficient aerobic oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran catalyzed by magnetic nanoparticle supported manganese oxide. Applied Catalysis A: General, 472, 64-71.

[23] Sádaba, I., Gorbanev, Y.Y., Kegnæs, S., Putluru, S.S.R., Berg, R.W. and Riisager, A. (2013) Catalytic performance of zeolite-supported Vanadia in the aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. ChemCatChem, 5, 284-293.

[24] Le, N.-T., Lakshmanan, P., Cho, K., Han, Y. and Kim, H. (2013) Selective oxidation of 5-hydroxymethyl-2-furfural into 2,5-diformylfuran over VO2+ and Cu2+ ions immobilized on sulfonated carbon catalysts. Applied Catalysis A: General, 464-465, 305-312.

[25] Yoon, H.-J., Choi, J.-W., Jang, H.-S., Cho, J.K., Byun, J.-W., Chung, W.-J., Lee, S.-M. and Lee, Y.-S. (2011) Selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran by polymer-supported IBX amide. Synlett, 2011, 165-168.

[26] Takagaki, A., Takahashi, M., Nishimura, S. and Ebitani, K. (2011) One-pot synthesis of 2,5-diformylfuran from carbohydrate derivatives by sulfonated resin and hydrotalcite-supported ruthenium catalysts. ACS Catalysis, 1, 1562-1565.

[27] Amarasekara, A.S., Green, D. and McMillan, E. (2008) Efficient oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran using Mn(III)-Salen catalysts. Catalysis Communications, 9, 286-288.

[28] Partenheimer, W. and Vladimir, V. (2001) Grushin, synthesis of 2,5-diformylfuran and fu-ran-2,5-dicarboxylic acid by catalytic air-oxidation of 5-hydroxymethylfurfural. Unexpectedly selective aerobic oxidation of benzyl alcohol to benzaldehyde with metal=bromide catalysts. Advanced Synthesis & Catalysis, 343, 102-111.

[29] Nie, J.F., Xie, J.H. and Liu, H.C. (2013) Efficient aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran on supported Ru catalysts. Journal of Catalysis, 301, 83-91.

[30] Xiang, X., He, L., Yang, Y., Guo, B., Tong, D.M. and Hu, C.W. (2011) A one-pot two-step approach for the catalytic conversion of glucose into 2,5-diformylfuran. Catalysis Letters, 141, 735-741.

分享
Top