Preparation of Spherical FePO4.2H2O and LiFePO4/C Electrode Materials by Controlled Solution pH during Oxidation of Fe2+ Ions

作者: 邵 辰 , 范旭良 , 罗晶晶 , 马荣伟 , 张 南 , 牛振江 :浙江师范大学物理化学研究所,固体表面反应化学浙江省重点实验室,先进催化材料教育部重点实验室,金华;

关键词: 亚铁离子氧化pHFePO4.2H2OLiFePO4/CFerrous Iron Oxidation Solution pHFePO4?2H2O


1.0 mol/L FeSO4H3PO4溶液中,通过调节氧化Fe2+时溶液的pH值,在无任何添加剂的条件下制备出不同形貌和结构的FePO4·2H2O沉淀。以FePO4前驱体、Li2CO3和蔗糖为原料,经700℃碳热反应10 h后得LiFePO4/C电极材料。运用X-射线衍射(XRD)、扫描电子显微镜(SEM)、热重-差热(TG-DTA)和循环伏安(CV)等方法对样品进行了表征。结果显示,当加入H2O2时溶液的pH1.6~2.0之间,可得到由200 nm左右的一次颗粒构成的球状FePO4∙2H2O粉末。由纳米结构FePO4前驱体合成得到粒径为1 μm左右的球形LiFePO4/C,其在1.0 mol/L Li2SO4水溶液中显示良好的电化学性能。

FePO4∙2H2O powders with various morphologies and structures were prepared in a solution of 1.0 mol/L FeSO4 and 1.0 mol/L H3PO4 without any additives, by adjusting pH of the solutions during oxidation of Fe2+ ions. LiFePO4/C electrode materials were synthesized using the FePO4·2H2O precursor, Li2CO3 and sucrose by the carbothermic reduction method at 700˚C for 10 h. The powders were analyzed with X-ray diffraction (XRD), scanning electron microscope (SEM), thermogravimetric-differential thermal analysis (TG-DTA) and cyclic voltammetry (CV) methods. The results show that the spherical FePO4·2H2O agglomerates of primary particles about 200 nm can be obtained in the solution of pH controlled within 1.6 - 2.0 when adding H2O2 for oxidation of Fe2+ ions. The spherical LiFePO4/C materials with particles size about 1 μm were synthesized from the nanostructural FePO4 precursors. The LiFePO4/C materials show favorable electrochemical performance in 1.0 mol/L Li2SO4 aqueous solution.

文章引用: 邵 辰 , 范旭良 , 罗晶晶 , 马荣伟 , 张 南 , 牛振江 (2014) 控制溶液pH值氧化Fe2+离子制备球状FePO4.2H2O及LiFePO4/C电极材料。 材料科学, 4, 111-118. doi: 10.12677/MS.2014.43017


[1] Padhi, A.K., Nanjundaswamy, K.S. and Goodenough, J.B. (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Journal of the Electrochemical Society, 144, 1188-1194.

[2] Amine, K., Liu, J., Belharouak, I., Kang, S.H., Bloom, I., Vissers, D. and Henriksen, G. (2005) Advanced cathode materials for high-power applications. Journal of Power Sources, 146, 111-115.

[3] Liao, X.Z., Ma, Z.F., He, Y.S., Zhang, X.M., Wang, L. and Jiang, Y. (2005) Elecchemical Behavior of LiFePO4/C Cathode Material for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 152, A1969-A1973.

[4] Tarascon, J.M., Grugeon, S., Morcrette, M., Laruelle, S., Rozier, P. and Poizot, P. (2005) New concepts for the search of better electrode materials for rechargeable lithium batteries. Comptes Rendus Chimie, 8, 9-15.

[5] Dodd, J.L., Yazami, R. and Fultz, B. (2006) Phase Diagram of LixFePO4. Electrochemical and Solid-State Letters, 9, A151-A155.

[6] Anna, S.A., Beata, K., Lennart, H. and John, O.T. (2000) Lithium extraction/insertion in LiFePO4: An X-ray diffraction and Mossbauer spectroscopy study. Solid State Ionics, 130, 41-52.

[7] Macneil, D.D., Lu, Z., Chen, Z. and Dahn, J.R. (2002) A comparison of electrode/electrolyte reaction at elevated temperature for various Li-ion battery cathodes. Journal of Power Sources, 108, 8-14.

[8] Franger, S., Bourbon, C. and Le Cras, F. (2004) Optimized lithium iron phosphate for high-rate electrochemical applications. Journal of the Electrochemical Society, 151, A1024-A1027.

[9] Chung, S.Y., Bloking, J.T. and Chiang, Y.M. (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nature Materials, 1, 123-128.

[10] Hu, Y.S., Guo, Y.G., Dominko, R., Dominko, R., Gaberscek, M., Jamnik, J. and Maier, J. (2007) Improved electrode performance of porous LiFePO4 using RuO2 as an oxidic nanoscale interconnect. Advanced Materials, 19, 1963-1966.

[11] Gao, J., Li, J. and He, X. (2011) Synthesis and electrochemical characteristics of LiFePO4/C cathode materials from different precursors. International Journal of Electrochemical Science, 6, 2819-2825.

[12] 王志兴, 伍凌, 李新海, 胡启明, 郭华军, 彭文杰, 张云河 (2008) LiFePO4的前驱体制备与性能. 功能材料, 4, 614-617.

[13] 胡国荣, 周玉琳, 彭忠东, 高旭光 (2007) LiFePO4前驱体FePO4的制备及性能.电池, 5, 339-341.

[14] 叶焕英, 郑典模, 陈骏驰, 李会芹 (2012) 超细二水磷酸铁的制备研究. 无机盐工业, 4, 59-61.

[15] Scaccia, S., Carewska, M., Bartolomeo, A.D. and Prosini, P.P. (2002) Thermoanalytical investigation of iron phosphate obtained by spontaneous precipitation from aqueous solutions. Thermochimica Acta, 383, 145-152.

[16] Boonchom, B. and Danvirutai, C. (2007) Thermal decomposition kinetics of FePO4•3H2O precursor to synthetize spherical nanoparticles FePO4. Industrial and Engineering Chemistry Research, 46, 9071-9076.

[17] Boonchom, B. and Puttawong, S. (2010) Thermodynamics and kinetics of the dehydration reaction of FePO4•2H2O. Physica B: Condensed Matter, 405, 2350-2355.

[18] Pierri, E., Tsamouras, D. and Dalas, E. (2000) Ferric phosphate precipitation in aqueous media. Journal of Crystal Growth, 213, 93-98.

[19] 彭忠东, 唐代春, 胡国荣, 杜柯, 曹雁冰 (2012) 均匀沉淀法制备LiFePO4/C及其电化学性能. 中国有色金属学报, 5, 1319-1325.

[20] Luo, G., Liu, W.J. and Yu, X.Y. (2013) Effect of pyrrole additive on structure and properties of LiFePO4/C cathode materials prepared by in situ polymerization restriction method. Journal of the Chinese Ceramic Society, 41, 19-23.

[21] Misawa, T., Hashimoto, K. and Shimodaira, S. (1973) Formation of Fe(II)-Fe(III) intermediate green complex on oxidation of ferrous ion in neutral and slightly alkaline sulphate solutions. Journal of Inorganic and Nuclear Chemistry, 35, 4167-4174.

[22] He, P., Zhang, X., Wang, Y.G., Cheng, L. and Xia, Y.Y. (2008) Lithium-ion intercalation behavior of LiFePO4 in aqueous and nonaqueous electrolyte solutions. Journal of the Electrochemical Society, 155, A144-A150.

[23] Mi, C.H., Zhang, X.G. and Li, H.L. (2007) Electrochemical behaviors of solid LiFePO4 and Li0.99Nb0.01FePO4 in Li2SO4 aqueous electrolyte. Journal of Electrochemical Chemistry, 602, 245 -254.

[24] Scaccia, S., Carewska, M., Bartolomeo, A.D. and Prosini, P.P. (2002) Thermoanalytical investigation of iron phosphate obtained by spontaneous precipitation from aqueous solutions. Thermochimica Acta, 383, 145-152.

[25] 武汉大学 (2010) 分析化学(第五版)上册. 高等教育出版社, 武汉.

[26] Lee, M.H., Kim, J.Y. and Song, H.K. (2010) A hollow sphere secondary structure of LiFePO4 nanoparticles. Chemical Communications, 46, 6795-6797.

[27] Yutaka, T., Takashi, Y. and Takashi, K. (1984) The synthesis of green rust II (FeIIIu1 – FeIIu2) and its spontaneous transformation into Fe3O4. Bulletin of the Chemical Society of Japan A, 57, 2411-2416.

[28] Bocher, F., Gehin, A., Ruby, C., Ghanbaja, J., Abdelmoula, M. and Genin, J.M. (2004) Coprecipitation of Fe(II-III) hydroxycarbonate green rust stabilised by phosphate adsorption. Solid State Sciences, 6, 117-124.

[29] Choi, J., Batchelor, B., Won, C. and Chung, J. (2012) Nitrate reduction by green rusts modified with trace metals. Chemosphere, 86, 860-865.

[30] O’Loughlin, E.J., Kelly, S.D., Kemner, K.M., Roseann, C. and Russell, E. (2003) Reduction of AgI, AuIII, CuII, and HgII by FeII/FeIII hydroxysulfate green rust. Chemosphere, 53, 437-446.

[31] Wu, W.M., Wen, Z.H. and Li, J.H. (2011) Hierarchical carbon-coated LiFePO4 nanoplate microspheres with high electrochemical performance. Advanced Materials, 23, 1126-1129.

[32] Manickam, M., Singh, P., Thurgate, S. and Prince, K. (2006) Redox behavior and surface characterization of LiFePO4 in lithium hydroxide electrolyte. Journal of Power Sources, 158, 646-649.

[33] 黄可龙, 杨赛, 刘素琴, 王海波 (2007) 磷酸铁锂在水溶液中的循环伏安研究. 电源技术, 131, 386-388.

[34] Rho, Y.H. and Kanamura, K. (2004) Li+-ion diffusion in LiCoO2 thin film prepared by the poly (vinyplyrrolidone) sol-gel method. Journal of the Electrochemical Society, 151, A1406-A1411.