水泥稳定碎石强度特性及设计标准
The Strength Properties and Design Criteria of Cement Stabilized Crushed Rock

作者: 宋志峰 , 刘海鹏 :陕西省交通建设集团,西安; 蒋应军 :长安大学教育部特殊地区公路工程重点实验室,西安; 陈浙江 :金华市公路管理局,金华;

关键词: 路面工程水泥稳定碎石强度特性强度设计标准疲劳断裂垂直振动试验方法Pavement Engineering Cement Stabilized Crushed Rock Strength Properties Strength Criteria Fatigue Cracking Vertical Vibration Compaction Method

摘要:

开裂破坏是水泥稳定碎石基层工程实践中最大问题,而强度特性及强度标准是影响水泥稳定碎石基层开裂关键因素之一。为了缓解水泥稳定碎石开裂破坏,振动(VVCM)成型试件研究了水泥剂量、级配类型和密度等对水泥稳定碎石强度影响规律,分析了施工期和运营期基层荷载响应和疲劳累积损伤,提出了控制开裂破坏的水泥稳定碎石强度设计标准。结果表明:VVCM试件强度测试精度高达93%;当水泥剂量 ≥ 5%时,增加水泥剂量对提高水泥稳定碎石强度效果有限,且不利于材料抗裂性能;与悬浮密实级配相比,采用骨架密实级配可提高强度10%;压实度提高1%,水泥稳定碎石强度提高约11%;为防止设计年限内基层在施工车辆和运营车辆反复作用下产生疲劳断裂,建议水泥稳定石灰岩碎石7 d无侧限抗压强度不低于7.0 MPa。实体工程应用表明,本成果能较好地解决水泥稳定碎石基层开裂问题。

Abstract: Cracking has proven to be the major failure in cement stabilized crushed rock (CSCR) base. The lack of strength and insufficient anti-cracking, which are related to the strength properties and design criteria of CSCR, are two main causes for cracking in CSCR. In order to reduce cracking in CSCR base, the objective of this study is to investigate the influence of cement content, gradation and compaction degree on the strength properties of CSCR with vertical vibration compaction method (VVCM) in Laboratory and the load response and fatigue cumulative damage of CSCR base, and then provide a design criterion to control the cracking of CSCR. The results from this study indicate that: 1) the strength of VVCM specimens is 0.93 times of core samples strength; 2) when cement content is more than 5%, the strength of CSCR will not increase significantly with cement content, but anti-cracking performance will decrease significantly; 3) with compaction degree rise of 1%, the ultimate strength of CSCR can be increased by 11% ;4) compared with CSCR of suspended-dense type, the ultimate strength of CSCR of dense framework type can be increased by 10%; 5) in order to prevent fatigue cracking of CSCR base under repeated vehicles load during design period, the recommended minimum 7-day unconfined compressive strength of stabilization of crushed limestone is 7.0 MPa. Actual engineering application results show that this production will contribute to alleviating the problem of cracking CSCR base.

文章引用: 宋志峰 , 蒋应军 , 刘海鹏 , 陈浙江 (2014) 水泥稳定碎石强度特性及设计标准。 交通技术, 3, 41-54. doi: 10.12677/OJTT.2014.33008

参考文献

[1] Lippert, D.L. and Schutzbach, A.M. (1989) Crack control of pozzolanic bases. Final Reports.

[2] Adaska, W.S. and Luhr, D.R. (2004) Control of reflective cracking in cement stabilized pavements. 5th International RILEM Conference, Limoges, May 2004, 1-8.

[3] George, P.K. (2002) Minimizing cracking in cement-treated materials for improved performance. Research and Development Bulletin RD123, Portland Cement Association, Skokie.

[4] 沙爱民, 胡力群 (2008) 半刚性基层的材料特性. 中国公路学报, 4, 1-5.

[5] 沙爱民, 胡力群 (2008) 半刚性基层材料的结构特征. 中国公路学报, 4, 1-5.

[6] Jitsangiam P. and Nikraz H. (2009) Mechanical behaviours of hydrated cement treated crushed rock base as a road base material in Western Australia. International Journal of Pavement Engineering, 10, 39-47.

[7] Guthrie, W.S., Sebesta, S. and Scullion, T. (2001) Improving long-term performance of cement-treated aggregate base materials. Texas A&M Transportation Institute, College Station.

[8] 蒋应军 (2012) 垂直振动法水泥稳定碎石设计与施工技术. 人民交通出版社, 北京.

[9] Guthrie, W.S., Sebesta, S. and Scullion, T. (2001) Selecting optimum cement contents for stabilizing aggregate base materials. Technical Reports, September 1998-Augugust 2001 Texas Transportation Institute, College Station.

[10] Thysell, B. and Oesterland, B. (1976) Vibratory compaction in pre-testing for cement stabilization of gravel roads. Royal Institute of Technology, Stockholm.

[11] JTG F40-2004,公路沥青路面施工技术规范.

[12] Jiang, Y.J. and Zhang, B.Y. (2010) Indoor test research on fatigue performance of cement-stabilized macadam. Proceedings of International Workshop on Energy and Environment in the Development of Sustainable Asphalt Pavements, June 2010.

[13] Jiang, Y.J. and Li, L.W. (2011) Performances of cement-stabilized macadam with multilevel dense built-in grading structure gradation. International Conference on Electric Technology and Civil Engineering, Lushan, 22-24 April 2011, 5250-5254.

[14] 李明杰, 蒋应军, 张俊杰, 王顺, 戴经梁 (2010) 半刚性基层材料振动试验方法. 交通运输学报, 1, 6-12.

[15] 蒋应军, 李明杰, 张俊杰等 (2010) 水泥稳定碎石强度影响因素. 长安大学学报(自然科学版), 4, 1-7.

[16] 蒋应军, 王富玉, 刘斌 (2009) 水泥稳定碎石强度特性的试验研究. 武汉理工大学学报, 15, 52-57.

[17] 王艳, 倪富健, 李再新 (2009) 水泥稳定碎石混合料疲劳性能. 交通运输工程学报, 4, 10-14.

[18] 韩丁, 黄晓明 (2009) 水泥稳定碎石疲劳的破坏力学分析. 土木建筑与环境工程, 3, 78-82.

分享
Top